8 resultados para Uniaxial hot pressing
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Transuranium radionuclides (Pu, Am and Cm) present in effluents discharged into the north-east Irish Sea by British Nuclear Fuels Limited, Windscale, Cumbria, UK, are found in sediment and biota of the Esk estuary ~10 km to the south. The site of the present investigation was at Newbiggin and the materials examined were suspended particulate debris samples at the sea surface, bottom sediments and some forms of biota collected in September 1977. It is shown here that hot particles (defined as small volumes of material emitting a particles recorded in a dielectric detector as dense clusters of tracks from a common origin) found in the estuary are likely to be original effluent debris derived from the processing of Magnox uranium fuel elements and not formed in situ as a result of natural processes common to the estuary.
Resumo:
An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.
Resumo:
Although the Ulleung Basin is an important biological hot spot in East/Japan Sea (hereafter the East Sea), very limited knowledge for seasonal and annual variations in the primary productivity exists. In this study, a recent decadal trend of primary production in the Ulleung Basin was analyzed based on MODIS-derived monthly primary production for a better annual production budget. Based on the MODIS-derived primary production, the mean daily primary productivity was 766.8 mg C m-2 d-1 (SD=+/- 196.7 mg C m-2 d-1) and the annual primary productivity was 280.2 g C m-2 yr-1 (SD=+/- 14.9 g C m-2 yr-1) in the Ulleung Basin during the study period. The monthly contributions of primary production were not largely variable among different months, and a relatively small interannual production variability was also observed in the Ulleung Basin, which indicates that the Ulleung Basin is a sustaining biologically productive region called as hot spot in the East Sea. However, a significant recent decline in the annual primary production was observed in the Ulleung Basin after 2006. Although no strong possibilities were found in this study, the current warming sea surface temperature and a negative phase PDO index were suggested for the recent declining primary production. For a better understanding of subsequent effects on marine ecosystems, more intensive interdisciplinary field studies will be required in the Ulleung Basin.