8 resultados para U.S. Fish and Wildlife Service.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosystem productivity and habitat quantity and quality; (ii) impacts of changes in production and habitat on marine fish and shellfish species including effects on the community species composition, spatial distributions, interactions, and vital rates of fish and shellfish; (iii) impacts on fisheries and their associatedcommunities; (iv) implications for food security and associated changes; and (v) uncertainty andmodelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where relative impacts by region could be compared on a hemispheric or global level. Eight research foci were identified that will improve the projections of climate impacts on fish, fisheries, and fishery-dependent communities.
Resumo:
It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.
Resumo:
Ecosystems provide a range of goods and services that contribute toward human well-being through the environmental, economic, and cultural benefits they provide. Although the importance of these services is increasingly being recognized by governments, our understanding of the implications of different energy technologies on the provision of these services is limited. The chapter presents an assessment of four key energy technologies that considers the ecosystem services impacts across the entire lifecycle. In demonstrating the global implications of these energy technologies, the chapter makes the case that assessment of UK energy policy must consider a broad range of environmental and societal indicators both within the UK and overseas.
Resumo:
Ecosystem services provided by the marine environment are fundamental to human health and well-being. Despite this, many marine systems are being degraded to an extent that may reduce their capacity to provide these ecosystem services. The ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way (UN Convention on Biological Diversity, 2000). Its application to marine management and spatial planning has been proposed as a means of maintaining the economic and social value of the oceans, not only in the present but for generations to come. Characterising the susceptibility of services (and combinations of services) to particular human activities based on knowledge of impacts on biodiversity and ecosystem functioning (as described in preceding chapters) is a challenge for future management of the oceans. In this chapter, we highlight the existing, but limited knowledge of how ecosystem services may be impacted by different human activities. We discuss how impacts on one service can impact multiple services and explore how the impacts on services can vary both spatially and temporally and according to context. We focus particularly on the effects on ecosystem services of activities whose impacts on biodiversity and ecosystem functioning have already been considered in previous chapters. Some of these activities are associated with poor management of ecosystem benefits, for example, from provisioning services (aquaculture and fisheries), or with excessive input of wastes, fertilisers and contaminants into the system overburdening the waste treatment and assimilation services. Other impacts are associated with the construction of structures or use of space designed to generate benefits from environmental services such as the presence of water as a carrier for shipping, or sources of wind, wave and tidal power. We discuss the trade-offs that are made, consciously or otherwise, between different ecosystem services, which arise from human activities to optimise or manage specific ecosystem services.