6 resultados para Transport de sédiments en suspension

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the ecosystem of the North Sea may occur as pronounced inter-annual and step-wise shifts as well as gradual trends. Marked inter-annual shifts have occurred at least twice in the last two decades, the late 1980s and the late 1990s, that appear to reflect an increased inflow of oceanic water and species. Numerical modelling has demonstrated a link between altered rates of inflow of oceanic water into the northern North Sea and a regime shift after 1988. In 1989 and 1997 oceanic species not normally found in the North Sea were observed there, suggesting pulses of oceanic water had entered the basin and triggered the subsequent ecosystem change. The oceanic water has origins mainly west of Britain in the Rockall Trough, where the long-term mean volume transport is around 3.7Sv northwards (1Sv=10 super(6)m super(3)s super(1)), but in early 1989 and early 1998 was observed to be more than twice the mean value, reaching over 7Sv. These periods of high transport coinciding with the inferred pulses of oceanic water into the North Sea suggest a connection through the continental shelf edge current. Copyright 2001 International Council for the Exploration of the Sea

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.