2 resultados para Transcription-translation feedback loops

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much debate on the extent to which resource availability (bottom-up) versus predation pressure from fish (top-down) modulates the dynamics of plankton in marine systems. Physico/chemical bottom-up forcing has been considered to be the main mechanism structuring marine ecosystems, although some field observations and empirical correlations support top-down modulation. Models have indicated possible feedback loops to the plankton and other studies have interpreted a grazing impact from long-term changes in fish stocks. In freshwater systems, evidence for top-down forcing by fish and trophic cascading is well documented. First, evidence for equivalent top-down effects in the marine environment is presented, with an overview of relevant publications. In the second part, time series, averaged for the North Sea (when possible from 1948 to 1997), of fish catch, recruitment, and spawning stock biomass are related to the abundance of species or larger groupings of zooplankton and phytoplankton from the Continuous Plankton Recorder survey and selected environmental parameters. Preliminary analysis suggests that there is strong interaction between different fish species and the plankton and that the fishery, through top-down control, may at times be an important contributor to changes in the North Sea ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has already led to the range expansion of warm-water plankton assemblages in the northeast Atlantic and the corresponding range contraction of colder-water species. The temperate copepod Calanus finmarchicus is predicted to shift farther northward into polar waters traditionally dominated by the arctic copepod C. glacialis. To identify temperaturemediated changes in gene expression that may be critical for the thermal acclimation and resilience of the 2 Calanus spp., we conducted a whole transcriptome profiling using RNA-seq on an Ion Torrent platform. Transcriptome responses of C. finmarchicus and C. glacialis from Disko Bay, west Greenland, were investigated under realistic thermal stresses (at + 5, +10 and +15°C) for 4 h and 6 d. C. finmarchicus showed a strong response to temperature and duration of stress, involving up-regulation of genes related to protein folding, transcription, translation and metabolism. In sharp contrast, C. glacialis displayed only low-magnitude changes in gene expression in response to temperature and duration of stress. Differences in the thermal responses of the 2 species, particularly the lack of thermal stress response in C. glacialis, are in line with laboratory and field observations and suggest a vulnerability of C. glacialis to climate change.