9 resultados para Timing de ativação

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neocalanus plumchrus/flemingeri copepods make up a large proportion of spring mesozooplankton biomass and are a valuable nutritional source for many higher trophic levels. Copepodites through to sub-adult stage are present in surface waters for a relatively short period of time each spring, and the date of maximum biomass has been calculated as the date when 50% of the population were at the sub-adult, CV stage. This index allows quite a precise date to be calculated from relatively infrequent sampling and interannual comparisons between 1957 and 2004 have demonstrated that the timing of peak abundance is significantly advanced in warmer years. However, recent data from the Continuous Plankton Recorder survey, which samples the surface NE Pacific more frequently during spring, has found that maximum numbers of CV copepodites occur after the 50% point is reached so that maximum biomass occurs some weeks later than predicted by this index (although comparisons between years show that the magnitude of the timing shift is similar). Comparisons with depth-stratified profiles from the BIONESS show that this is not just due to single-depth near-surface sampling by the CPR. We speculate on the cause of this change which could be related to the width of the cohort (which appears to now be narrower, at least in warm years) or the length of time that the CV stage needs to spend in the surface accumulating lipid before beginning diapause. A narrower cohort has implications for predators who will have less time to take advantage of this food source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.