6 resultados para Time correlation function

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collection of marine bacteria isolated from a temperate coastal zone has been screened in a programme of biodiscovery. A total of 34 enzymes with biotechnological potential were screened in 374 isolates of marine bacteria. Only two enzymes were found in all isolates while the majority of enzyme activities were present in a smaller proportion of the isolates. A cluster analysis demonstrated no significant correlation between taxonomy and enzyme function. However, there was evidence of co-occurrence of some enzyme activity in the same isolate. In this study marine Proteobacteria had a higher complement of enzymes with biodiscovery potential than Actinobacteria; this contrasts with the terrestrial environment where the Actinobacteria phylum is a proven source of enzymes with important industrial applications. In addition, a number of novel enzyme functions were more abundant in this marine culture collection than would be expected on the basis of knowledge from terrestrial bacteria. There is a strong case for future investigation of marine bacteria as a source for biodiscovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interannual and seasonal trends of zooplankton abundance and species composition were compared between the Bongo net and Continuous Plankton Recorder (CPR) time series in the Gulf of Maine. Data from 5799 Bongo and 3118 CPR samples were compared from the years 1978–2006. The two programs use different sampling methods, with the Bongo time series composed of bimonthly vertically integrated samples from locations throughout the region, while the CPR was towed monthly at 10 m depth on a transect that bisects the region. It was found that there was a significant correlation between the interannual (r = 0.67, P < 0.01) and seasonal (r = 0.95, P < 0.01) variability of total zooplankton counts. Abundance rankings of individual taxa were highly correlated and temporal trends of dominant copepods were similar between samplers. Multivariate analysis also showed that both time series equally detected major shifts in community structure through time. However, absolute abundance levels were higher in the Bongo and temporal patterns for many of the less abundant taxa groups were not similar between the two devices. The different mesh sizes of the samplers probably caused some of the discrepancies; but diel migration patterns, damage to soft bodied animals and avoidance of the small CPR aperture by some taxa likely contributed to the catch differences between the two devices. Nonetheless, Bongo data presented here confirm the previously published patterns found in the CPR data set, and both show that the abundance increase of the 1990s has been followed by average to below average levels from 2002 to 06.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beam attenuation serves as a proxy for particulate matter and is a key parameter in visibility algorithms for the aquatic environment. It is well known, however, that the beam attenuation is a function of the acceptance angle of the transmissometer used to measure it. Here we compare eight different transmissometers with four different acceptance angles using four different deployment strategies and sites, and find that their mean attenuation values differ markedly and in a consistent way with instrument acceptance angle: smaller acceptance angles provide higher beam attenuation values. This difference is due to variations in scattered light collected with different acceptance angles and is neither constant nor easy to parameterize. Variability (in space or time) in the ratios of beam attenuations measured by two different instruments correlates, in most cases, with the particle size parameter (as expected from Mie theory), but this correlation is often weak and can be the opposite of expectations based on particle size changes. We recommended careful consideration of acceptance angle in applications of beam transmission data especially when comparing data from different instruments. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem models are often assessed using quantitative metrics of absolute ecosystem state, but these model-data comparisons are disproportionately vulnerable to discrepancies in the location of important circulation features. An alternative method is to demonstrate the models capacity to represent ecosystem function; the emergence of a coherent natural relationship in a simulation indicates that the model may have an appropriate representation of the ecosystem functions that lead to the emergent relationship. Furthermore, as emergent properties are large-scale properties of the system, model validation with emergent properties is possible even when there is very little or no appropriate data for the region under study, or when the hydrodynamic component of the model differs significantly from that observed in nature at the same location and time. A selection of published meta-analyses are used to establish the validity of a complex marine ecosystem model and to demonstrate the power of validation with emergent properties. These relationships include the phytoplankton community structure, the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric balance of the ecosystem. These metrics can also inform aspects of the marine ecosystem model not available from traditional quantitative and qualitative methods. For instance, these emergent properties can be used to validate the design decisions of the model, such as the range of phytoplankton functional types and their behaviour, the stoichiometric flexibility with regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.