10 resultados para Temporal Analysis

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Scotia Sea has been a focus of biological- and physical oceanographic study since the Discovery expeditions in the early 1900s. It is a physically energetic region with some of the highest levels of productivity in the Southern Ocean. It is also a region within which there have been greater than average levels of change in upper water column temperature. We describe the results of three cruises transecting the central Scotia Sea from south to north in consecutive years and covering spring, summer and autumn periods. We also report on some community level syntheses using both current-day and historical data from this region. A wide range of parameters were measured during the field campaigns, covering the physical oceanography of the region, air–sea CO2 fluxes, macro- and micronutrient concentrations, the composition and biomass of the nano-, micro- and mesoplankton communities, and the distribution and biomass of Antarctic krill and mesopelagic fish. Process studies examined the effect of iron-stress on the physiology of primary producers, reproduction and egestion in Antarctic krill and the transfer of stable isotopes between trophic layers, from primary consumers up to birds and seals. Community level syntheses included an examination of the biomass-spectra, food-web modelling, spatial analysis of multiple trophic layers and historical species distributions. The spatial analyses in particular identified two distinct community types: a northern warmer water community and a southern cold community, their boundary being broadly consistent with the position of the Southern Antarctic Circumpolar Current Front (SACCF). Temperature and ice cover appeared to be the dominant, over-riding factors in driving this pattern. Extensive phytoplankton blooms were a major feature of the surveys, and were persistent in areas such as South Georgia. In situ and bioassay measurements emphasised the important role of iron inputs as facilitators of these blooms. Based on seasonal DIC deficits, the South Georgia bloom was found to contain the strongest seasonal carbon uptake in the ice-free zone of the Southern Ocean. The surveys also encountered low-production, iron-limited regions, a situation more typical of the wider Southern Ocean. The response of primary and secondary consumers to spatial and temporal heterogeneity in production was complex. Many of the life-cycles of small pelagic organisms showed a close coupling to the seasonal cycle of food availability. For instance, Antarctic krill showed a dependence on early, non-ice-associated blooms to facilitate early reproduction. Strategies to buffer against environmental variability were also examined, such as the prevalence of multiyear life-cycles and variability in energy storage levels. Such traits were seen to influence the way in which Scotia Sea communities were structured, with biomass levels in the larger size classes being higher than in other ocean regions. Seasonal development also altered trophic function, with the trophic level of higher predators increasing through the course of the year as additional predator-prey interactions emerged in the lower trophic levels. Finally, our studies re-emphasised the role that the simple phytoplankton-krill-higher predator food chain plays in this Southern Ocean region, particularly south of the SACCF. To the north, alternative food chains, such as those involving copepods, macrozooplankton and mesopelagic fish, were increasingly important. Continued ocean warming in this region is likely to increase the prevalence of such alternative such food chains with Antarctic krill predicted to move southwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are the largest source of calcium carbonate in the oceans and are considered to play an important role in oceanic carbon cycles. Current methods to detect the presence of coccolithophore blooms from Earth observation data often produce high numbers of false positives in shelf seas and coastal zones due to the spectral similarity between coccolithophores and other suspended particulates. Current methods are therefore unable to characterise the bloom events in shelf seas and coastal zones, despite the importance of these phytoplankton in the global carbon cycle. A novel approach to detect the presence of coccolithophore blooms from Earth observation data is presented. The method builds upon previous optical work and uses a statistical framework to combine spectral, spatial and temporal information to produce maps of coccolithophore bloom extent. Validation and verification results for an area of the north east Atlantic are presented using an in situ database (N = 432) and all available SeaWiFS data for 2003 and 2004. Verification results show that the approach produces a temporal seasonal signal consistent with biological studies of these phytoplankton. Validation using the in situ coccolithophore cell count database shows a high correct recognition rate of 80% and a low false-positive rate of 0.14 (in comparison to 63% and 0.34 respectively for the established, purely spectral approach). To guide its broader use, a full sensitivity analysis for the algorithm parameters is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton observation is the product of a number of trade-offs related to sampling processes, required level of diversity and size spectrum analysis capabilities of the techniques involved. Instruments combining the morphological and high-frequency analysis for phytoplankton cells are now available. This paper presents an application of the automated high-resolution flow cytometer Cytosub as a tool for analysing phytoplanktonic cells in their natural environment. High resolution data from a temporal study in the Bay of Marseille (analysis every 30 min over 1 month) and a spatial study in the Southern Indian Ocean (analysis every 5 min at 10 knots over 5 days) are presented to illustrate the capabilities and limitations of the instrument. Automated high-frequency flow cytometry revealed the spatial and temporal variability of phytoplankton in the size range 1−∼50 μm that could not be resolved otherwise. Due to some limitations (instrumental memory, volume analysed per sample), recorded counts could be statistically too low. By combining high-frequency consecutive samples, it is possible to decrease the counting error, following Poisson’s law, and to retain the main features of phytoplankton variability. With this technique, the analysis of phytoplankton variability combines adequate sampling frequency and effective monitoring of community changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite ocean-colour sensors have life spans lasting typically five-to-ten years. Detection of long-term trends in chlorophyll-a concentration (Chl-a) using satellite ocean colour thus requires the combination of different ocean-colour missions with sufficient overlap to allow for cross-calibration. A further requirement is that the different sensors perform at a sufficient standard to capture seasonal and inter-annual fluctuations in ocean colour. For over eight years, the SeaWiFS, MODIS-Aqua and MERIS ocean-colour sensors operated in parallel. In this paper, we evaluate the temporal consistency in the monthly Chl-a time-series and in monthly inter-annual variations in Chl-a among these three sensors over the 2002–2010 time period. By subsampling the monthly Chl-a data from the three sensors consistently, we found that the Chl-a time-series and Chl-a anomalies among sensors were significantly correlated for >90% of the global ocean. These correlations were also relatively insensitive to the choice of three Chl-a algorithms and two atmospheric-correction algorithms. Furthermore, on the subsampled time-series, correlations between Chl-a and time, and correlations between Chl-a and physical variables (sea-surface temperature and sea-surface height) were not significantly different for >92% of the global ocean. The correlations in Chl-a and physical variables observed for all three sensors also reflect previous theories on coupling between physical processes and phytoplankton biomass. The results support the combining of Chl-a data from SeaWiFS, MODIS-Aqua and MERIS sensors, for use in long-term Chl-a trend analysis, and highlight the importance of accounting for differences in spatial sampling among sensors when combining ocean-colour observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between biodiversity and stability of marine benthic assemblages was investigated using existing data sets (n = 28) covering various spatial (m-km) and temporal (1973-2006) scales in different benthic habitats (emergent rock, rock pools and sedimentary habitats) through meta-analyses. Assemblage stability was estimated by measuring temporal variances of species richness, total abundance (density or % cover) and community species composition and abundance structure (using multivariate analyses). Positive relationships between temporal variability in species number and richness were generally observed at both quadrat (<1 m2) and site (100 m2) scales, while no relationships were observed by multivariate analyses. Positive relationships were also observed at the scale of site between temporal variability in species number and variability in community structure with evenness estimates. This implies that the relationship between species richness or evenness and species richness variability is slightly positive and depends on the scale of observation, suggesting that biodiversity per se is important for the stability of ecosystems. Changes within community assemblages in terms of structure are, however, generally independent of biodiversity, suggesting no effect of diversity, but the potential impact of individual species, and/or environmental factors. Except for sedimentary and rock pool habitats, no relationship was observed between temporal variation of the aggregated variable of total abundances and diversity at either scale. Overall our results emphasise that relationships depend on scale of measurements, type of habitats and the marine systems (North Atlantic and Mediterranean) considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.