7 resultados para TENS
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.
Resumo:
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Resumo:
Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short‐term IFSF could result from animals using a win–stay, lose–shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central‐place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long‐term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind‐induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long‐term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win–stay, lose–shift foraging. Rather, we hypothesize that site familiarity, accrued early in life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central‐place foragers, with far‐reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.
Resumo:
1.There are tens of thousands of species of phytoplankton found throughout the tree of life. Despite this diversity, phytoplankton are often aggregated into a few functional groups according to metabolic traits or biogeochemical role. We investigate the extent to which phytoplankton species dynamics are neutral within functional groups. 2.Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at the functional group level leading to largely predictable patterns of seasonal succession. It is much more difficult to make general statements about the dynamics of individual species. 3.We use a 7 year time-series at station L4 in the Western English Channel with 57 diatom and 17 dinoflagellate species enumerated weekly to test if the abundance of diatom and dinoflagellate species vary randomly within their functional group envelope or if each species is driven uniquely by external factors. 4.We show that the total biomass of the diatom and dinoflagellate functional groups is well predicted by irradiance and temperature and quantify trait values governing the growth rate of both functional groups. The biomass dynamics of the functional groups are not neutral and each has their own distinct responses to environmental forcing. Compared to dinoflagellates, diatoms have faster growth rates, and grow faster under lower irradiance, cooler temperatures, and higher nutrient conditions. 5.The biomass of most species vary randomly within their functional group biomass envelope, most of the time. As a consequence, modelers will find it difficult to predict the biomass of most individual species. Our analysis supports the approach of using a single set of traits for a functional group and suggests that it should be possible to determine these traits from natural communities.
Resumo:
The increasing availability of large, detailed digital representations of the Earth’s surface demands the application of objective and quantitative analyses. Given recent advances in the understanding of the mechanisms of formation of linear bedform features from a range of environments, objective measurement of their wavelength, orientation, crest and trough positions, height and asymmetry is highly desirable. These parameters are also of use when determining observation-based parameters for use in many applications such as numerical modelling, surface classification and sediment transport pathway analysis. Here, we (i) adapt and extend extant techniques to provide a suite of semi-automatic tools which calculate crest orientation, wavelength, height, asymmetry direction and asymmetry ratios of bedforms, and then (ii) undertake sensitivity tests on synthetic data, increasingly complex seabeds and a very large-scale (39 000km2) aeolian dune system. The automated results are compared with traditional, manually derived,measurements at each stage. This new approach successfully analyses different types of topographic data (from aeolian and marine environments) from a range of sources, with tens of millions of data points being processed in a semi-automated and objective manner within minutes rather than hours or days. The results from these analyses show there is significant variability in all measurable parameters in what might otherwise be considered uniform bedform fields. For example, the dunes of the Rub’ al Khali on the Arabian peninsula are shown to exhibit deviations in dimensions from global trends. Morphological and dune asymmetry analysis of the Rub’ al Khali suggests parts of the sand sea may be adjusting to a changed wind regime from that during their formation 100 to 10 ka BP.
Resumo:
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.