11 resultados para System analysis - Data processing
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.
Resumo:
Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.
Resumo:
A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
Resumo:
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
Resumo:
As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).
Resumo:
Regular plankton sampling off Plymouth by the Marine Biological Association (MBA) has been carried out from the early 1900s. Much of the sample analysis and description of the results was carried out by Sir Frederick Russell and Professor Alan Southward (AJS), the latter having completed the organisation and transfer of the paper records to digital files. The current authors have transferred the main data files of AJS on zooplankton and fish larvae to the MBA long-term database (including various editing and checking against original analysis records and published data) together with adding the data for 2002-2009. In this report the updated time-series are reviewed in the context of earlier work, particularly with respect to the Russell Cycle. It is not intended as an exhaustive analysis. Brief details of the sampling and comments on data processing are given in an appendix.
Resumo:
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).