19 resultados para Swimming pool

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The energy contributions of aerobic metabolism, phosphoarginine, ATP and octopine in the adductor muscles of P. magellanicus were examined during swimming and recovery. 2. A linear relationship was observed between the size of the phosphoarginine pool and the number of valve snaps. A linear increase in arginine occurred during the same period. 3. 3. Octopine was formed during the first few hours of recovery, particularly in the phasic muscle. 4. The restoration of the phosphoarginine pool appeared to be by aerobic metabolism. 5. It is concluded that the role of octopine formation is to supply energy when the tissues are anoxic and to operate at such a rate as to maintain the basal rate of energy production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical interactions play a fundamental role in the ecology of marine foodwebs. Dimethyl sulfide (DMS) is a ubiquitous marine trace gas that acts as a bioactive compound by eliciting foraging behavior in a range of marine taxa including the copepod Temora longicornis. Production of DMS can rapidly increase following microzooplankton grazing on phytoplankton. Here, we investigated whether grazing-induced DMS elicits an increase in foraging behavior in the copepod Calanus helgolandicus. We developed a semi-automated method to quantify the effect of grazing-mediated DMS on the proportion of the time budget tethered females allocate towards slow swimming, typically associated with feeding. The pooled data showed no differences in the proportion of the 25 min time budget allocated towards slow swimming between high (23.6 +/- 9.74%) and low (29.1 +/- 18.33%) DMS treatments. However, there was a high degree of variability between behavioral responses of individual copepods. We discuss the need for more detailed species-specific studies of individual level responses of copepods to chemical signals at different spatial scales to improve our understanding of chemical interactions between copepods and their prey.