5 resultados para Suspension’s rheology
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Cytochemical observations and measurements on cell-free suspensions of lysosomes from the digestive gland of Mytilus edulis showed a reduced latency of the lysosomal enzyme beta -N-acetyl-hexosaminidase 12h after mussels were transferred from 21 to 35%o salinity, but showed no change up to 6 h after transfer. There was a transient alteration in the form of the latency curve after 6 h at high salinity, signifying a gradual change in membrane integrity. Free hexosaminidase activity increased, 12 h after the salinity rise. The lysosomes were permeable to amino acids when ATP was present; permeability increased following the rise in salinity. The concentration of ninhydrin-positive substances in the lysosomes increased 6 h after transfer and then, between 6 and 12 h, the concentration declined. The results are consistent with the hypothesis that lysosomal hydrolysis is a source of free amino acids during the adaptation of mussels to increased salinity.
Resumo:
Hollow, black reticulate ‘microfossils’ of unknown affinity found in Ordovician to late Cretaceous sediments from North America, Europe and Australia were given the name Linotolypa by Eisenack in 1962. In 1978, he recognised that they were pseudo-microfossils consisting of asphalt, and noted that their structure resembled that of soap bubbles formed in agitated suspensions. These objects are well known as a component of the particles caught from the air by pollen and spore traps at the present day. They are correctly termed ‘cenospheres’ and are formed from coal and possibly pitch and fuel oil by incomplete combustion. If their presence were to be confirmed in Palaeozoic sediments, this would provide important new evidence for the occurrence of fire in the geological record and of the history of levels of O2 in the atmosphere.
Resumo:
Laboratory simulation of cloud processing of three model dust types with distinct Fe-content (Moroccan dust, Libyan dust and Etna ash) and reference goethite and ferrihydrite were conducted in order to gain a better understanding of natural nanomaterial inputs and their environmental fate and bioavailability. The resulting nanoparticles (NPs) were characterised for Fe dissolution kinetics, aggregation/size distribution, micromorphology and colloidal stability of particle suspensions using a multi-method approach. We demonstrated that the: (i) acid-leachable Fe concentration was highest in volcanic ash (1 m Mg(-1) dust) and was followed by Libyan and Moroccan dust with an order of magnitude lower levels; (ii) acid leached Fe concentration in the<20 nm fraction was similar in samples processed in the dark with those under artificial sunlight, but average hydrodynamic diameter of NPs after cloud-processing (pH~6) was larger in the former; iii) NPs formed at pH~6 were smaller and less poly-disperse than those at low pH, whilst unaltered zeta potentials indicated colloidal instability; iv) relative Fe percentage in the finer particles derived from cloud processing does not reflect Fe content of unprocessed dusts (e.g. volcanic ash>Libyan dust). The common occurrence of Fe-rich "natural nanoparticles" in atmospheric dust derived materials may indicate their more ubiquitous presence in the marine environment than previously thought.
Resumo:
Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48 h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.