10 resultados para Surface structure

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH) anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS), and Sea Surface Temperature (SST) are used to complement the Continuous Plankton Recorder (CPR) survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W) and Argentia (Newfoundland; 47° N, 54° W) over the period 1995–1998. Over this period, we examined physical structures (i.e. SST and SSH) and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine bivalve mollusc,Mytilus edulis (blue mussel), is a noted accumulator of many environmental pollutants and is increasingly used for the chemical and biological assessment of environmental impact. The toxic effects of crude oil-derived aromatic hydrocarbons (30 μg/l total hydrocarbons) on the lysosomal-vacuolar system of the digestive cells have been investigated in cryostat sections of hexane-frozen digestive glands. Exposure to aromatic hydrocarbons reduced the cytochemically determined latency of lysosomal β-N-acetylhexosaminidase; lysosomal volume density and surface density increased while the numerical density decreased. Experimental exposure resulted in the formation of very large lysosomes which are believed to be largely autophagic in function and these results indicate a significant structural and functional disturbance of digestive cell lysosomes in response to hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural changes were observed in the digestive tubule epithelial cells of Mytilus edulis following long-term exposure to the water accommodated fraction (WAF) of North Sea crude oil (30 μg · l−1 total oil derived aromatic hydrocarbons). The changes observed involved a reduction in the height of the digestive cells beyond that demonstrated in a normal feeding cycle. In addition there was a loss of the normal synchrony of the digestive cells to a point where nearly all the tubules exhibited an appearance similar to that which is usually termed ‘reconstituting’. These alterations were quantified using an image analysis technique and the mean height of the digestive cells used as an index of digestive function or state. Long-term exposure also induced a radical alteration of the structure of secondary lysosomes within the digestive cells, resulting in the formation of large lysosomes, believed to be autolysosomes. Stereological analyses showed that these lysosomes are reduced in numbers and greatly increased in volume in comparison with controls. There is a concomitant increase in surface area of lysosomes per unit volume of digestive cell compared with control conditions. These alterations are indicative of fundamental changes in secondary lysosomal function involving an autophagic response to oil derived hydrocarbons. which would contribute to the reduction of digestive cell cytoplasm. These cellular alterations are discussed in terms of their use as indices of cell injury, in response to oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatiotemporal variation in seabird demographic parameters is often pronounced and may be an important source of information on the state of marine ecosystems. Black-legged kittiwakes Rissa tridactyla in Britain and Ireland show strong regional structure in breeding productivity, and both temporal and spatial variation are probably related to abundance of the principal prey of breeding kittiwakes, the lesser sandeel Ammodytes marinus. Annual regional estimates of sandeel abundance do not exist, prohibiting direct tests of this hypothesis. We examined relationships between kittiwake breeding productivity and 2 potential proxies of sandeel abundance, winter sea surface temperature (SST) and abundance of Calanus copepods, within and among 6 regions in Britain and Ireland from 1986 to 2004. Means and trends in winter SST differed among regions, with higher means and less pronounced increasing trends in western (Atlantic) regions than in eastern (North Sea) regions. A negative relationship between breeding productivity and winter SST in the previous year was found within 2 regions (East Scotland and Orkney), as well as in a cross-regional analysis. Results were inconclusive for Calanus abundance, with a positive relationship in East Scotland and negative in Orkney. These results demonstrate that although a single environmental driver (SST) is related to both within- and between-region variation in a key demographic parameter, regional heterogeneity in SST trends as well as the importance of other factors may lead to highly variable responses. Understanding this heterogeneity is critical for predicting long-term effects of climate change or other anthropogenic drivers on marine ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with <0.1 mg chlorophyll-a m-3, and less than a factor of 2 for systems with >0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sea-surface layer is the very upper part of the sea surface where reduced mixing leads to strong gradients in physical, chemical and biological properties1. This surface layer is naturally reactive, containing a complex chemistry of inorganic components and dissolved organic matter (DOM), the latter including amino acids, proteins, fatty acids, carbohydrates, and humic-type components,2 with a high proportion of functional groups such as carbonyls, carboxylic acids and aromatic moieties.3 The different physical and chemical properties of the surface of the ocean compared with bulk seawater, and its function as a gateway for molecules to enter the atmosphere or ocean phase, make this an interesting and important region for study. A number of chemical reactions are believed to occur on and in the surface ocean; these may be important or even dominant sources or sinks of climatically-active marine trace gases. However the sea surface, especially the top 1um to 1mm known as the sea surface microlayer (ssm), is critically under-sampled, so to date much of the evidence for such chemistry comes from laboratory and/or modeling studies. This review discusses the chemical and physical structure of the sea surface, mechanisms for gas transfer across it, and explains the current understanding of trace gas formation at this critical interface between the ocean and atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton total chlorophyll concentration (TCHLa) and phytoplankton size structure are two important ecological indicators in biological oceanography. Using high performance liquid chromatography (HPLC) pigment data, collected from surface waters along the Atlantic Meridional Transect (AMT), we examine temporal changes in TCHLa and phytoplankton size class (PSC: micro-, nano- and pico-phytoplankton) between 2003 and 2010 (September to November cruises only), in three ecological provinces of the Atlantic Ocean. The HPLC data indicate no significant change in TCHLa in northern and equatorial provinces, and an increase in the southern province. These changes were not significantly different to changes in TCHLa derived using satellite ocean-colour data over the same study period. Despite no change in AMT TCHLa in northern and equatorial provinces, significant differences in PSC were observed, related to changes in key diagnostic pigments (fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin and zeaxanthin), with an increase in small cells (nano- and pico-phytoplankton) and a decrease in larger cells (micro-phytoplankton). When fitting a three-component model of phytoplankton size structure — designed to quantify the relationship between PSC and TCHLa to each AMT cruise, model parameters varied over the study period. Changes in the relationship between PSC and TCHLa have wide implications in ecology and marine biogeochemistry, and provide key information for the development and use of empirical ocean-colour algorithms. Results illustrate the importance of maintaining a time-series of in-situ observations in remote regions of the ocean, such as that acquired in the AMT programme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated a 100 × 100 km high-salinity region of the North Atlantic subtropical gyre during the Sub-Tropical Atlantic Surface Salinity Experiment/Salinity Processes in the Upper-ocean Regional Study (STRASSE/SPURS) cruise from August 21, 2012, to September 9, 2012. Results showed great variability in sea surface salinity (SSS; over 0.3 psu) in the mesoscale, over 7 cm of total evaporation, and little diapycnal mixing below 36 m depth, the deepest mixed layers encountered. Strong currents in the southwestern part of the domain, and the penetration of freshwater, suggest that advection contributed greatly to salinity evolution. However, it was further observed that a smaller cyclonic structure tucked between the high SSS band and the strongest currents contributed to the transport of high SSS water along a narrow front. Cross-frontal transport by mixing is also a possible cause of summertime reduction of SSS. The observed structure was also responsible for significant southward salt transport over more than 200 km.