5 resultados para Species boundary
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The way in which total secondary production is partitioned amongst species in various macrofauna communities (Amphiura, Venus, Abra, Modiolus) around the British Isles is discussed. When the proportion of total production is plotted for each species, ranked in order of productive importance, curves are produced which are characteristic of particular physical conditions. The shapes of the curves are independent of the actual species involved, but depend on the proportion of individuals in the community which adopt a particular feeding behaviour, and the scope for diversification within trophic groups. The form of these curves correlates closely with bottom currents and associated bed-stresses, since these affect both the nature of the food supply to bottom animals and the nature of the substrate. These observations have important implications for the structure and functioning of benthic communities. Comparison of production partitioning in the meiofauna of mud and sand substrates indicates a remarkable similarity within trophic groups although the partitioning of production between trophic groups is very different. The shapes of production-rank curves again appear to depend on the scope for diversification within trophic groups. In the meiofauna resources are partitioned more equitably than in the macrofauna. There is a marked discontinuity in the lognormal distribution of body sizes within integrated benthic communities at the meiofauna-macrofauna size boundary.
Resumo:
Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.
Resumo:
Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.
Resumo:
The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.
Resumo:
The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.