4 resultados para Spatially modulated

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined how marine plankton interaction networks, as inferred by multivariate autoregressive (MAR) analysis of time-series, differ based on data collected at a fixed sampling location (L4 station in the Western English Channel) and four similar time-series prepared by averaging Continuous Plankton Recorder (CPR) datapoints in the region surrounding the fixed station. None of the plankton community structures suggested by the MAR models generated from the CPR datasets were well correlated with the MAR model for L4, but of the four CPR models, the one most closely resembling the L4 model was that for the CPR region nearest to L4. We infer that observation error and spatial variation in plankton community dynamics influenced the model performance for the CPR datasets. A modified MAR framework in which observation error and spatial variation are explicitly incorporated could allow the analysis to better handle the diverse time-series data collected in marine environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.