3 resultados para Space charge effects

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of remotely sensed altimeter data and in situ measurements shows that ERS 2 radar can monitor the ocean permanent thermocline from space. The remotely sensed sea level anomaly data account for similar to 2/3 of the temperature variance or vertical displacement of isotherms at a depth of similar to 550 m in the Subtropical North Atlantic Ocean near 32.5 degree N. This depth corresponds closely to the region of maximum temperature gradient in the permanent thermocline where near semi-annual internal vertical displacements reach 200 to 300 m. The gradient of the altimeter sea level anomaly data correlates well with measured ocean currents to a depth of 750 m. It is shown that observations from space can account for similar to 3/4 of the variance of ocean currents measured in situ in the permanent thermocline over a 2-y period. The magnification of the permanent thermocline displacement with respect to the displacement of the sea surface was determined as - x650 and gives a measure of the ratio of barotropic to baroclinic decay scale of geostrophic current with depth. The overall results are used to interpret an eight year altimeter data tie series in the Subtropical North Atlantic at 32.5 degree N which shows a dominant wave or eddy period near 200 days, rather than semi-annual and increases in energy propagating westward in 1995 (west of 25 degree W). The effects of rapid North Atlantic Oscillation climate change on ocean circulation are discussed. The altimeter data for the Atlantic were Fourier analysed. It is shown how the annual and semi-annual components relate to the seasonal maximum cholorophyll-a SeaWiFS signal in tropical and equatorial regions due to the lifting of the thermocline caused by seasonally varying ocean currents forced by wind stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beam attenuation serves as a proxy for particulate matter and is a key parameter in visibility algorithms for the aquatic environment. It is well known, however, that the beam attenuation is a function of the acceptance angle of the transmissometer used to measure it. Here we compare eight different transmissometers with four different acceptance angles using four different deployment strategies and sites, and find that their mean attenuation values differ markedly and in a consistent way with instrument acceptance angle: smaller acceptance angles provide higher beam attenuation values. This difference is due to variations in scattered light collected with different acceptance angles and is neither constant nor easy to parameterize. Variability (in space or time) in the ratios of beam attenuations measured by two different instruments correlates, in most cases, with the particle size parameter (as expected from Mie theory), but this correlation is often weak and can be the opposite of expectations based on particle size changes. We recommended careful consideration of acceptance angle in applications of beam transmission data especially when comparing data from different instruments. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) are highly variable in time and space. What is driving the variability in DMS(P), and can those variability be explained by physical processes and changes in the biological community? During the Southern Ocean Gas Exchange Experiment (SO GasEx) in the austral fall of 2008, two 3He/SF6 labeled patches were created in the surface water. SF6 and DMS were surveyed continuously in a Lagrangian framework, while direct measurements of air-sea exchange further constrained the gas budgets. Turbulent diffusivity at the base of the mixed layer was estimated from SF6 profiles and used to calculate the vertical fluxes of DMS and nutrients. Increasing mixed layer nutrient concentrations due to mixing were associated with a shift in the phytoplankton community structure, which in turned likely affected the sulfur dynamics on timescales of days. DMS concentration as well as air-sea DMS flux appeared to be decoupled from the DMSP concentration, possibly due to grazing and bacterial DMS production. Contrary to expectations, in an environment with high winds and modest productivity, physical processes (air-sea exchange, photochemistry, vertical mixing) only accounted for a small fraction of DMS loss from the surface water. Among the DMS sinks, inferred biological consumption most likely dominated during SO GasEx.