5 resultados para Southwest Fisheries Science Center (U.S.)
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The concept of a stock of fish as a management unit has been around for well over a hundred years, and this has formed the basis for fisheries science. Methods for delimiting stocks have advanced considerably over recent years, including genetic, telemetric, tagging, geochemical and phenotypic information. In parallel with these developments, concepts in population ecology such as meta-population dynamics and connectivity have advanced. The pragmatic view of stocks has always accepted some mixing during spawning, feeding and/or larval drift. Here we consider the mismatch between ecological connectivity of a matrix of populations typically focussed on demographic measurements, and genetic connectivity of populations that focus on genetic exchange detected using modern molecular approaches. We suggest that from an ecological-connectivity perspective populations can be delimited as management units if there is limited exchange during recruitment or via migration in most years. From a genetic-connectivity perspective such limited exchange can maintain panmixia. We use case-studies of species endangered by overexploitation and/or habitat degradation to show how current methods of stock delimitation can help in managing populations and in conservation.
Resumo:
The concept of a stock of fish as a management unit has been around for well over a hundred years, and this has formed the basis for fisheries science. Methods for delimiting stocks have advanced considerably over recent years, including genetic, telemetric, tagging, geochemical and phenotypic information. In parallel with these developments, concepts in population ecology such as meta-population dynamics and connectivity have advanced. The pragmatic view of stocks has always accepted some mixing during spawning, feeding and/or larval drift. Here we consider the mismatch between ecological connectivity of a matrix of populations typically focussed on demographic measurements, and genetic connectivity of populations that focus on genetic exchange detected using modern molecular approaches. We suggest that from an ecological-connectivity perspective populations can be delimited as management units if there is limited exchange during recruitment or via migration in most years. From a genetic-connectivity perspective such limited exchange can maintain panmixia. We use case-studies of species endangered by overexploitation and/or habitat degradation to show how current methods of stock delimitation can help in managing populations and in conservation.
Resumo:
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.