6 resultados para Sole carbon source

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.