5 resultados para Soils, Radioactive substances in
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances(EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2, 300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq′/Fm′, within 4% of pre-shock values, whereas Fq′/Fm′ in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xanthan at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the benefits of living in an EPS matrix for biofilm diatoms.
Resumo:
Cytochemical observations and measurements on cell-free suspensions of lysosomes from the digestive gland of Mytilus edulis showed a reduced latency of the lysosomal enzyme beta -N-acetyl-hexosaminidase 12h after mussels were transferred from 21 to 35%o salinity, but showed no change up to 6 h after transfer. There was a transient alteration in the form of the latency curve after 6 h at high salinity, signifying a gradual change in membrane integrity. Free hexosaminidase activity increased, 12 h after the salinity rise. The lysosomes were permeable to amino acids when ATP was present; permeability increased following the rise in salinity. The concentration of ninhydrin-positive substances in the lysosomes increased 6 h after transfer and then, between 6 and 12 h, the concentration declined. The results are consistent with the hypothesis that lysosomal hydrolysis is a source of free amino acids during the adaptation of mussels to increased salinity.