2 resultados para Snails

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2-wk TLm of stepwise-acclimated Thais lapillus (L.) (>20 mm long) was 14.2–16.2%. salinity (S) at 5, 10, 15, and 20°C. The same TLm occurred at 10 °C after direct transfer of snails to the final salinity but stepwise-acclimated small snails (<20 mm) tolerated a significantly lower salinity (12.7%. S). Oxygen consumption rates () fit the allometric equation . Salinity and temperature had a significant effect on , which was highest at 30%. S and depressed at 17.5%. S and at 5°C. Ammonia excretion rates fit the allometric equation . Both salinity and temperature affected . Ammonia excretion was significantly lower at 17.5 %. S than at higher salinities at 10, 15, and 20°C, but did not vary as a function of salinity at 5°C. Primary amines were lost from snails under all conditions without any obvious relationship with temperature or salinity. Primary-amine loss, expressed as a percentage of , was significantly higher at 17.5 %. S than at higher salinities. Oxygen : nitrogen ratios ranged from 4.2–15.6, indicating protein was the primary metabolic substrate, and were highest at 15 °C and lowest at 5 °C. Snails withstood 89 days starvation without mortality at 10°C. Oxygen consumption of snails declined by 28% during starvation due to a 37% decline in dry weight; consequently, weight-specific respiration rate increased by 17%. The intercept (a) for the allometric equations did not change during starvation. Ammonia excretion increased during starvation, and primary-amine loss increased until Day 21, then declined. Oxygen: nitrogen ratios declined from 14 to 8, indicating an increased catabolism of protein during starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine gastropod Littorina littorea from four sites in the vicinity of the Sullom Voe Oil Terminal was found to display reduced cytochemically determined latency of lysosomal arylsulphatase, β-glucuronidase and acid phosphatase in comparison with snails from a nearby ‘clean’ site. This is interpreted as indicating lysosomal destabilization by environmental factors. Elevated total activities of particular lysosomal hydrolases were recorded at three of the sites in Sullom Voe. Animals from a fourth site (Swarta Taing) showed significant depression of arylsulphatase and β-glucuronidase. Cytochemically determined activity of blood cell NADPH-neotetrazolium reductase, which is a component of microsomal detoxication systems, was stimulated in these same sites in comparison with the ‘clean’ reference site. This stimulation or induction is interpreted as a response to the presence of oil-derived polynuclear aromatic hydrocarbons. These results are discussed in the light of previous work on the effects of hydrocarbons on lysosomes and in terms of the possible physiological consequences for the animals.