13 resultados para Simpson, Ron

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some commercial fish species of the northeast Atlantic Ocean have relocated in response to warming. The impact of warming on marine assemblages in the region may already be much greater than appreciated, however, with over 70% of common demersal fish species responding through changes in abundance, rather than range. The northeast Atlantic Ocean is one of the most productive marine ecoregions in the world with a substantial commercial fishery. It is also a region that has undergone particularly rapid warming over the past 50 years, up to four times faster than the global average1. Compared with other marine regions worldwide, the biological response in the northeast Atlantic Ocean has been particularly dramatic, reflecting this rapid warming. Studies have documented biogeographical movements in marine plankton of over 1,000 km northwards2 and advances in the onset of key life-history events by six to eight weeks3. In addition, there has been limited evidence of distributional shifts in some fish species along latitudinal and depth gradients in response to warming4, 5. Writing in Current Biology, Stephen Simpson and colleagues6 present the most comprehensive analysis so far of the impact of warming on commercially important European continental-shelf fish species in the region, and in doing so show that there has been a profound reorganization of local communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms that structure communities and influence biodiversity are fundamental goals of ecology. To test the hypothesis that the abundance and diversity of upper-trophic level predators (seabirds) is related to the underlying abundance and diversity of their prey (zooplankton) and ecosystem-wide energy availability (primary production), we initiated a monitoring program in 2002 that jointly and repeatedly surveys seabird and zooplankton populations across a 7,500 km British Columbia-Bering Sea-Japan transect. Seabird distributions were recorded by a single observer (MH) using a strip-width technique, mesozooplankton samples were collected with a Continuous Plankton Recorder, and primary production levels were derived using the appropriate satellite parameters and the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997). Each trophic level showed clear spatio-temporal patterns over the course of the study. The strongest relationship between seabird abundance and diversity and the lower trophic levels was observed in March/April ('spring') and significant relationships were also found through June/July ('summer'). No discernable relationships were observed during the September/October ('fall') months. Overall, mesozooplankton abundance and biomass explained the dominant portion of seabird abundance and diversity indices (richness, Simpson's Index, and evenness), while primary production was only related to seabird richness. These findings underscore the notion that perturbations of ocean productivity and lower trophic level ecosystem constituents influenced by climate change, such as shifts in timing (phenology) and synchronicity (match-mismatch), could impart far-reaching consequences throughout the marine food web.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A regime shift is a large, sudden, and long-lasting change in the dynamics of an ecosystem, affecting multiple trophic levels. There are a growing number of papers that report regime shifts in marine ecosystems. However, the evidence for regime shifts is equivocal, because the methods used to detect them are not yet well developed. We have collated over 300 biological time series from seven marine regions around the UK, covering the ecosystem from phytoplankton to marine mammals. Each time series consists of annual measures of abundance for a single group of organisms over several decades. We summarised the data for each region using the first principal component, weighting either each time series or each biological component (e.g. plankton, fish, benthos) equally. We then searched for regime shifts using Rodionov’s regime shift detection (RSD) method, which found regime shifts in the first principal component for all seven marine regions. However, there are consistent temporal trends in the data for six of the seven regions. Such trends violate the assumptions of RSD. Thus, the regime shifts detected by RSD in six of the seven regions are likely to be artefacts caused by temporal trends. We are therefore developing more appropriate time series models for both single populations and whole communities that will explicitly model temporal trends and should increase our ability to detect true regime shift events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step-like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state-space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

‘Wasp-waist’ systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaculture is currently the fastest expanding global animal food production sector and is a key future contributor to food security. An increase in food security will be dependent upon the development and improvement of sustainable practices. A prioritization exercise was undertaken, focusing on the future knowledge needs to underpin UK sustainable aquaculture (both domestic and imported products) using a ‘task force’ group of 36 ‘practitioners’ and 12 ‘research scientists’ who have an active interest in sustainable aquaculture. A long list of 264 knowledge needs related to sustainable aquaculture was developed in conjunction with the task force. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge need. The top 25 knowledge needs are presented, as scored separately by ‘practitioners’ or ‘research scientists’. There was similar agreement in priorities identified by these two groups. The priority knowledge needs will provide guidance to structure ongoing work to make science accessible to practitioners and help to prioritize future science policy needs and funding. The process of knowledge exchange, and the mechanisms by which this can be achieved, effectively emerged as the top priority for sustainable aquaculture. Viable alternatives to wild fish-based aquaculture feeds, resource constraints that will potentially limit expansion of aquaculture, sustainable offshore aquaculture and the treatment of sea lice also emerged as strong priorities. Although the exercise was focused on UK needs for sustainable aquaculture, many of the emergent issues are considered to have global application.