5 resultados para Signals and signaling

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines long term changes in the plankton of the North Atlantic and northwest European shelf seas and discusses the forcing mechanisms behind some observed interannual, decadal and spatial patterns of variability with a focus on climate change. Evidence from the Continuous Plankton Records suggests that the plankton integrates hydrometeorological signals and may be used as a possible index of climate change. Changes evident in the plankton are likely to have important effects on the carrying capacity of fisheries and are of relvance to eutrophication issues and to the assessment of biodiversity. The scale of the changes seen over the past five decades emphasises the importance of maintaining existing, and establishing new, long term and wide scale monitoring programmes of the world's oceans in initiatives such as the Global Ocean Observing System (GOOS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using data from the CPR survey seven case studies are described that document different spatial and temporal responses in the plankton to hydroclimatic events. Long-term trends in the plankton of the eastern Atlantic and the North Sea over the last five decades are examined. Two of the examples revisit correlations that have been described between copepod abundance in the eastern Atlantic and North Sea and indices of atmospheric variability, the North Atlantic Oscillation index and the Gulf Stream North Wall index. Evidence for an increase in levels of Phytoplankton Colour (a visual index of chlorophyll) on the eastern and western sides of the Atlantic is presented. Changes in three trophic levels and in the hydrodynamics and chemistry of the North Sea circa 1988 are outlined as a regime shift. Two of the case studies emphasise the importance of variability in oceanic advection into shelf seas and the role of western and eastern margin currents at the shelf edge. The plankton appear to be integrating hydrometeorological signals and reflecting basin scale changes in circulation of surface, intermediate and deep waters in part associated with the NAO. The extent to which climatic variability may be contributing to the observed changes in the plankton is discussed with a forecast of potential future ecosystem effects in a climate change scenario.