4 resultados para Shortening of duration of studies
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Marine bivalve molluscs have in recent years attracted considerable attention for a variety of reasons, not least of which is their importance as a source of food for man. Much of this research has concentrated on studies of reproduction; Mytilus viridis (India: Nagabhushanam & Mane, 1975), M. edulis aoteanus and Aulacomya maoriana (New Zealand: Kennedy, 1977);Choromytilus meridionalis and Aulacomya ater (South Africa: Berry, 1978); Mytilus (= Perna) perna (Brazil: Lunetta, 1969); M. edulis planulatus (Australia: Wilson & Hodgkin, 1967); Mytilus californianus and M. edulis (U.S.A.: Hines, 1979); Mytilus galloprovincialis (France: Lubet, 1959) and M. edulis (U.K.: Chipperfield, 1953; Seed, 1975; Bayne et al. 1978). A review of the literature revealed that in the majority of studies cytology was used as a descriptive tool for the ‘staging’ (Chipperfield, 1953; Lubet, 1957; Seed, 1975, 1976) of the developing gametes and certain anomalies were apparent with regard to the nomenclature of the connective tissue matrix of the mantle lobes.
Resumo:
Traditionally, marine ecosystem structure was thought to be bottom-up controlled. In recent years, a number of studies have highlighted the importance of top-down regulation. Evidence is accumulating that the type of trophic forcing varies temporally and spatially, and an integrated view – considering the interplay of both types of control – is emerging. Correlations between time series spanning several decades of the abundances of adjacent trophic levels are conventionally used to assess the type of control: bottom-up if positive or top-down if this is negative. This approach implies averaging periods which might show time-varying dynamics and therefore can hide part of this temporal variability. Using spatially referenced plankton information extracted from the Continuous Plankton Recorder, this study addresses the potential dynamic character of the trophic structure at the planktonic level in the North Sea by assessing its variation over both temporal and spatial scales. Our results show that until the early-1970s a bottom-up control characterized the base of the food web across the whole North Sea, with diatoms having a positive and homogeneous effect on zooplankton filter-feeders. Afterwards, different regional trophic dynamics were observed, in particular a negative relationship between total phytoplankton and zooplankton was detected off the west coast of Norway and the Skagerrak as opposed to a positive one in the southern reaches. Our results suggest that after the early 1970s diatoms remained the main food source for zooplankton filter-feeders east of Orkney–Shetland and off Scotland, while in the east, from the Norwegian Trench to the German Bight, filter-feeders were mainly sustained by dinoflagellates.
Resumo:
As offshore windfarm (OWF) construction in the UK is progressing rapidly, monitoring of the economic and ecological effects of these developments is urgently needed. This is to enable both spatial planning and where necessary mitigation in an increasingly crowded marine environment. One approach to mitigation is co-location of OWFs and marine protected areas (MPAs). This systematic review has the objective to inform this co-location proposal and identify areas requiring further research. A limited number of studies addressing marine renewable energy structures and related artificial structures in coastal waters were found. The results of these studies display a change in species assemblages at artificial structures in comparison to naturally occurring habitats. An increase in hard substrata associated species, especially benthic bivalves, crustaceans and reef associated fish and a decrease in algae abundance were the dominant trends. Assemblages associated with complex concrete structures revealed greater similarity to natural hard substrata compared to those around steel structures. To consider marine renewable energy sites, especially large scale OWFs as MPAs, the dissimilar nature of assemblages on the structures themselves to natural communities should be considered. However positive effects were recorded on the abundance of commercially important crustacean species. This suggests potential for incorporation of OWFs as no fishing, or restricted activity zones within a wider MPA to aid fisheries augmentation. The limited available evidence highlights a requirement for significant further research involving long term monitoring at a variety of sites to better inform management options.
Resumo:
Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385–6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.