13 resultados para Settlement of structures

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many benthic marine invertebrates, like barnacles, have a planktonic larval stage whose primary purpose is dispersal. How these species colonize suitable substrata is fundamental to understanding their evolution, population biology, and wider community dynamics. Unlike larval dispersal, settlement occurs on a relatively small spatial scale and involves larval behavior in response to physical and chemical characteristics of the substratum. Biogenic chemical cues have been implicated in this process. Their identification, however, has proven challenging, no more so than for the chemical basis of barnacle gregariousness, which was first described >50 years ago. We now report that a biological cue to gregarious settlement, the settlement-inducing protein complex (SIPC), of the major fouling barnacle Balanus amphitrite is a previously undescribed glycoprotein. The SIPC shares a 30% sequence homology with the thioester-containing family of proteins that includes the alpha sub(2)-macroglobulins. The cDNA (5.2 kb) of the SIPC encodes a protein precursor comprising 1,547 aa with a 17-residue signal peptide region. A number of structural characteristics and the absence of a thioester bond in the SIPC suggest that this molecule is a previously undescribed protein that may have evolved by duplication from an ancestral alpha sub(2)-macroglobulin gene. Although the SIPC is regarded as an adult cue that is recognized by the cyprid at settlement, it is also expressed in the juvenile and in larvae, where it may function in larva-larva settlement interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of habitat modification by Mytilus edulis L. on the settlement and development of Fucus serratus populations was investigated on rocky shores of the Isle of Anglesey, North Wales. Settlement of fucoids was higher inside mussel habitat than outside on one of two shores studied. The effect of microhabitat on survival of fucoid germlings was examined by transplanting the germlings into and outside mussel habitats, each with and without the exclusion of grazers. Observation showed that periwinkles and top shells were abundant in mussel habitat, while limpets dominated bare rock. Exclusion of grazers greatly enhanced the survival of fucoid germlings in both habitats, indicating that while mussel habitat supports a different grazer assemblage to bare rock, both assemblages are important in limiting fucoid recruitment. The risk of dislodgement was assessed and compared between fucoids growing on mussel shells and bare rock. In situ pull-tests showed that less force was required to detach large fertile thalli growing on mussel shells than those growing on the rock. Adhesion was generally broken between the mussel and the rock rather than between the holdfast and the mussel. These observations indicate that mussels provide an unstable substrate for mature fucoids. Overall results suggest that a negative effect of mussel-modified habitat on fucoids is profound in adults; but the effect is context-dependent in juveniles and can be positive at settlement. Results from a survey on population structure of fucoids across two shores showed that there were greater numbers of large fertile fucoids growing directly attached to rock than on mussel shells, while there was no difference for juvenile fucoids confirming the experimental results. Moreover thalli larger than 60 cm were found only on the rock but not on shells. This finding suggests that a mussel dominated habitat may have a significant impact on reproductive output in fucoid populations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of habitat modification by Mytilus edulis L. on the settlement and development of Fucus serratus populations was investigated on rocky shores of the Isle of Anglesey, North Wales. Settlement of fucoids was higher inside mussel habitat than outside on one of two shores studied. The effect of microhabitat on survival of fucoid germlings was examined by transplanting the germlings into and outside mussel habitats, each with and without the exclusion of grazers. Observation showed that periwinkles and top shells were abundant in mussel habitat, while limpets dominated bare rock. Exclusion of grazers greatly enhanced the survival of fucoid germlings in both habitats, indicating that while mussel habitat supports a different grazer assemblage to bare rock, both assemblages are important in limiting fucoid recruitment. The risk of dislodgement was assessed and compared between fucoids growing on mussel shells and bare rock. In situ pull-tests showed that less force was required to detach large fertile thalli growing on mussel shells than those growing on the rock. Adhesion was generally broken between the mussel and the rock rather than between the holdfast and the mussel. These observations indicate that mussels provide an unstable substrate for mature fucoids. Overall results suggest that a negative effect of mussel-modified habitat on fucoids is profound in adults; but the effect is context-dependent in juveniles and can be positive at settlement. Results from a survey on population structure of fucoids across two shores showed that there were greater numbers of large fertile fucoids growing directly attached to rock than on mussel shells, while there was no difference for juvenile fucoids confirming the experimental results. Moreover thalli larger than 60 cm were found only on the rock but not on shells. This finding suggests that a mussel dominated habitat may have a significant impact on reproductive output in fucoid populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ecosystem services provided by the marine environment are fundamental to human health and well-being. Despite this, many marine systems are being degraded to an extent that may reduce their capacity to provide these ecosystem services. The ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way (UN Convention on Biological Diversity, 2000). Its application to marine management and spatial planning has been proposed as a means of maintaining the economic and social value of the oceans, not only in the present but for generations to come. Characterising the susceptibility of services (and combinations of services) to particular human activities based on knowledge of impacts on biodiversity and ecosystem functioning (as described in preceding chapters) is a challenge for future management of the oceans. In this chapter, we highlight the existing, but limited knowledge of how ecosystem services may be impacted by different human activities. We discuss how impacts on one service can impact multiple services and explore how the impacts on services can vary both spatially and temporally and according to context. We focus particularly on the effects on ecosystem services of activities whose impacts on biodiversity and ecosystem functioning have already been considered in previous chapters. Some of these activities are associated with poor management of ecosystem benefits, for example, from provisioning services (aquaculture and fisheries), or with excessive input of wastes, fertilisers and contaminants into the system overburdening the waste treatment and assimilation services. Other impacts are associated with the construction of structures or use of space designed to generate benefits from environmental services such as the presence of water as a carrier for shipping, or sources of wind, wave and tidal power. We discuss the trade-offs that are made, consciously or otherwise, between different ecosystem services, which arise from human activities to optimise or manage specific ecosystem services.