9 resultados para Serial number

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The US National Oceanic and Atmospheric Administration (NOAA) Fisheries Continuous Plankton Recorder (CPR) Survey has sampled four routes: Boston–Nova Scotia (1961–present), New York toward Bermuda (1976–present), Narragansett Bay–Mount Hope Bay–Rhode Island Sound (1998–present) and eastward of Chesapeake Bay (1974–1980). NOAA involvement began in 1974 when it assumed responsibility for the existing Boston–Nova Scotia route from what is now the UK's Sir Alister Hardy Foundation for Ocean Science (SAHFOS). Training, equipment and computer software were provided by SAHFOS to ensure continuity for this and standard protocols for any new routes. Data for the first 14 years of this route were provided to NOAA by SAHFOS. Comparison of collection methods; sample processing; and sample identification, staging and counting techniques revealed near-consistency between NOAA and SAHFOS. One departure involved phytoplankton counting standards. This has since been addressed and the data corrected. Within- and between-survey taxonomic and life-stage names and their consistency through time were, and continue to be, an issue. For this, a cross-reference table has been generated that contains the SAHFOS taxonomic code, NOAA taxonomic code, NOAA life-stage code, National Oceanographic Data Center (NODC) taxonomic code, Integrated Taxonomic Information System (ITIS) serial number and authority and consistent use/route. This table is available for review/use by other CPR surveys. Details of the NOAA and SAHFOS comparison and analytical techniques unique to NOAA are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating primary production at large spatial scales is key to our understanding of the global carbon cycle. Algorithms to estimate primary production are well established and have been used in many studies with success. One of the key parameters in these algorithms is the chlorophyll-normalised production rate under light saturation (referred to as the light saturation parameter or the assimilation number). It is known to depend on temperature, light history and nutrient conditions, but assigning a magnitude to it at particular space-time points is difficult. In this paper, we explore two models to estimate the assimilation number at the global scale from remotely-sensed data that combine methods to estimate the carbon-to-chlorophyll ratio and the maximum growth rate of phytoplankton. The inputs to the algorithms are the surface concentration of chlorophyll, seasurface temperature, photosynthetically-active radiation af the surface of the sea, sea surface nutrient concentration and mixed-layer depth. A large database of in situ estimates of the assimilation number is used to develop the models and provide elements of validation. The comparisons with in situ observations are promising and global maps of assimilation number are produced.