2 resultados para Sector exterior
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Anthropogenically released CO2 is dissolving in the ocean, causing a decrease in bulk-seawater pH (ocean acidification). Projections indicate that the pH will drop 0.3 units from its present value by 2100 (ref. 1). However, it is unclear how the growth of plankton is likely to respond. Using simulations we demonstrate how pH and carbonate chemistry at the exterior surface of marine organisms deviates increasingly from those of the bulk sea water as organism metabolic activity and size increases. These deviations will increase in the future as the buffering capacity of sea water decreases with decreased pH and as metabolic activity increases with raised seawater temperatures. We show that many marine plankton will experience pH conditions completely outside their recent historical range. However, ocean acidification is likely to have differing impacts on plankton physiology as taxon-specific differences in organism size, metabolic activity and growth rates during blooms result in very different microenvironments around the organism. This is an important consideration for future studies in ocean acidification as the carbonate chemistry experienced by most planktonic organisms will probably be considerably different from that measured in bulk-seawater samples. An understanding of these deviations will assist interpretation of the impacts of ocean acidification on plankton of different size and metabolic activity.
Resumo:
In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated “fe” ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.