34 resultados para Seasonal Distribution

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lesser sandeel Ammodytes marinus is a key species in the North Sea ecosystem, transferring energy from planktonic producers to top predators. Previous studies have shown a long-term decline in the size of 0-group sandeels in the western North Sea, but they were unable to pinpoint the mechanism (later hatching, slower growth or changes in size-dependent mortality) or cause. To investigate the first 2 possibilities we combined 2 independent time series of sandeel size, namely data from chick-feeding Atlantic puffins Fratercula arctica and from the Continuous Plankton Recorder (CPR), in a novel statistical model implemented using Markov Chain Monte Carlo (MCMC). The model estimated annual mean length on 1 July, as well as hatching date and growth rate for sandeels from 1973 to 2006. Mean length-at-date declined by 22% over this period, corresponding to a 60% decrease in energy content, with a sharper decline since 2002. Up to the mid-1990s, the decline was associated with a trend towards later hatching. Subsequently, hatching became earlier again, and the continued trend towards smaller size appears to have been driven by lower growth rates, particularly in the most recent years, although we could not rule out changes in size-dependent mortality. Our findings point to major changes in key aspects of sandeel life history, which we consider are most likely due to direct and indirect temperature-related changes over a range of biotic factors, including the seasonal distribution of copepods and intra- and inter-specific competition with planktivorous fish. The results have implications both for the many predators of sandeels and for age and size of maturation in this aggregation of North Sea sandeels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal fronts detected using multiple satellite sensors have been integrated to provide new information on the spatial and seasonal distribution of oceanic fronts in the North Atlantic. The branching of the North Atlantic Current (NAC) as it encounters the Mid-Atlantic Ridge (MAR) is reflected in surface thermal fronts, which preferentially occur at the Charlie Gibbs Fracture Zone (CGFZ) and several smaller fracture zones. North of the CGFZ there are few thermal fronts, contrasting with the region to the south, where there are frequent surface thermal fronts that are persistent seasonally and interannually. The alignment of the fronts confirms that the shallower Reykjanes Ridge north of the CGFZ is more of a barrier to water movements than the ridge to the south. Comparison of front distributions with satellite altimetry data indicates that the MAR influence on deep ocean currents is also frequently exhibited in surface temperature. The improved spatial and temporal resolution of the front analysis has revealed consistent seasonality in the branching patterns. These results contribute to our understanding of the variability of the NAC, and the techniques for visualising oceanic fronts can be applied in other regions to reveal details of surface currents that cannot be resolved using satellite altimetry or in situ measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated long-term variability of the calycophoran siphonophores Muggiaea atlantica and Muggiaea kochi in the Western English Channel (WEC) between 1930 and 2011. Our aims were to describe long-term changes in abundance and temporal distribution in relation to local environmental dynamics. In order to better understand mechanisms that regulate the species’ populations, we identified periods that were characteristic of in situ population growth and the environmental optima associated with these events. Our results show that between 1930 and the 1960s both M. atlantica and M. kochi were transient components of the WEC ecosystem. In the late 1960s M. atlantica, successfully established a resident population in the WEC, while the occurrence of M. kochi became increasingly sporadic. Once established as a resident species, the seasonal abundance and distribution of M. atlantica increased. Analysis of environmental conditions associated with in situ population growth revealed that temperature and prey were key determinants of the seasonal distribution and abundance of M. atlantica. Salinity was shown to have an indirect effect, likely representing a proxy for water circulation in the WEC. Anomalies in the seasonal cycle of salinity, indicating deviation from the usual circulation pattern in the WEC, were negatively associated with in situ growth, suggesting dispersal of the locally developing M. atlantica population. However, our findings identified complexity in the relationship between characteristics of the environment and M. atlantica variability. The transition from a period of transiency (1930–1968) to residency (1969–2011) was tentatively attributed to structural changes in the WEC ecosystem that occurred under the forcing of wider-scale hydroclimatic changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Charts are presented of the seasonal variations in the distribution of four phytoplankton and five zooplankton taxa in the North Atlantic and the North Sea. The main factors determining the seasonal variations appear to be the distribution of the main overwintering stocks, the current system and, in some instances, temperature control of the rate of population increase. Information is presented about the variation with latitude (over the range from 34° N to 65 ° N) of the seasonal regime of the plankton. On the assumption that there is a relationship between nutrient supply and vertical temperature stratification the main features of this variability can be interpreted. In the south (to about 43° N) nutrient limitation plus grazing appear to be dominant, resulting in a bimodal seasonal cycle of phytoplankton. North of about 60° N the system appears to be limited by the size of the phytoplankton stocks being grazed primarily by Calanus Finmarchicus and Euphausiacea. In an extensive zone, from about 44° N to 60° N, it would appear that the spring bloom of phytoplankton is under-exploited by grazing while in summer the zooplankton graze the daily production of the phytoplankton, the stocks of which are probably maintained by in situ nutrient regeneration. The implications, for at least this mid-latitude zone, that rates and fluxes of processes, as opposed to density dependent interactions between stocks, play a major role in the dynamics of the seasonal cycle is consistent with previously reported observations suggesting that physical environmental factors play a major role in determining year-to-year fluctuations in the abundance of the plankton.