6 resultados para Searching, bibliographical
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
While evidence for optimal random search patterns, known as Lévy walks, in empirical movement data is mounting for a growing list of taxa spanning motile cells to humans, there is still much debate concerning the theoretical generality of Lévy walk optimisation. Here, using a new and robust simulation environment, we investigate in the most detailed study to date (24×10(6) simulations) the foraging and search efficiencies of 2-D Lévy walks with a range of exponents, target resource distributions and several competing models. We find strong and comprehensive support for the predictions of the Lévy flight foraging hypothesis and in particular for the optimality of inverse square distributions of move step-lengths across a much broader range of resource densities and distributions than previously realised. Further support for the evolutionary advantage of Lévy walk movement patterns is provided by an investigation into the 'feast and famine' effect, with Lévy foragers in heterogeneous environments experiencing fewer long 'famines' than other types of searchers. Therefore overall, optimal Lévy foraging results in more predictable resources in unpredictable environments.
Resumo:
Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.
Resumo:
Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.
Resumo:
Efficient searching is crucial for timely location of food and other resources. Recent studies show diverse living animals employ a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behaviour and the search strategies of extinct organisms. Here we show using simulations of self-avoiding trace fossil trails that randomly introduced strophotaxis (U-turns) – initiated by obstructions such as ¬¬¬self-trail avoidance or innate cueing – leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts optimal Lévy searches can emerge from simple behaviours observed in fossil trails. We then analysed fossilized trails of benthic marine organisms using a novel path analysis technique and find the first evidence of Lévy-like search strategies in extinct animals. Our results show that simple search behaviours of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterising mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest Lévy-like behaviour has been employed by foragers since at least the Eocene but may have a more ancient origin, which could explain recent widespread observations of such patterns among modern taxa.