3 resultados para Scale density

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between biodiversity and stability of marine benthic assemblages was investigated using existing data sets (n = 28) covering various spatial (m-km) and temporal (1973-2006) scales in different benthic habitats (emergent rock, rock pools and sedimentary habitats) through meta-analyses. Assemblage stability was estimated by measuring temporal variances of species richness, total abundance (density or % cover) and community species composition and abundance structure (using multivariate analyses). Positive relationships between temporal variability in species number and richness were generally observed at both quadrat (<1 m2) and site (100 m2) scales, while no relationships were observed by multivariate analyses. Positive relationships were also observed at the scale of site between temporal variability in species number and variability in community structure with evenness estimates. This implies that the relationship between species richness or evenness and species richness variability is slightly positive and depends on the scale of observation, suggesting that biodiversity per se is important for the stability of ecosystems. Changes within community assemblages in terms of structure are, however, generally independent of biodiversity, suggesting no effect of diversity, but the potential impact of individual species, and/or environmental factors. Except for sedimentary and rock pool habitats, no relationship was observed between temporal variation of the aggregated variable of total abundances and diversity at either scale. Overall our results emphasise that relationships depend on scale of measurements, type of habitats and the marine systems (North Atlantic and Mediterranean) considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.