6 resultados para SURFACE FLUXES
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1–7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6–34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.
Resumo:
Oceanic methanol, acetaldehyde, and acetone concentrations were measured during an Atlantic Meridional Transect (AMT) cruise from the UK to Chile (49°N to 39°S) in 2009. Methanol (48–361 nM) and acetone (2–24 nM) varied over the track with enrichment in the oligotrophic Northern Atlantic Gyre. Acetaldehyde showed less variability (3–9 nM) over the full extent of the transect. These oxygenated volatile organic compounds (OVOCs) were also measured subsurface, with methanol and acetaldehyde mostly showing homogeneity throughout the water column. Acetone displayed a reduction below the mixed layer. OVOC concentrations did not consistently correlate with primary production or chlorophyll-a levels in the surface Atlantic Ocean. However, we did find a novel and significant negative relationship between acetone concentration and bacterial leucine incorporation, suggesting that acetone might be removed by marine bacteria as a source of carbon. Microbial turnover of both acetone and acetaldehyde was confirmed. Modeled atmospheric data are used to estimate the likely air-side OVOC concentrations. The direction and magnitude of air-sea fluxes vary for all three OVOCs depending on location. We present evidence that the ocean may exhibit regions of acetaldehyde under-saturation. Extrapolation suggests that the Atlantic Ocean represents an overall source of these OVOCs to the atmosphere at 3, 3, and 1 Tg yr−1 for methanol, acetaldehyde, and acetone, respectively.
Resumo:
From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area.
Resumo:
Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.