4 resultados para SUPRACHIASMATIC NUCLEI

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The results presented in this paper show that the exposure of mussels to a sublethal concentration of oil-derived aromatic hydrocarbons (30 μg 1−1) for a period of 4 months significantly decreases the protein level in the digestive gland of the animals (−17%). 2. The activity of the nuclear RNA polymerase I and II is also significantly decreased in the digestive gland of hydrocarbon-exposed mussels (−64% and −18%, respectively). 3. The RNAase(s) activity present in the nuclei from the digestive gland cells increases following the exposure of the mussels to aromatic hydrocarbons. This effect is particularly evident at high ionic strength [200 mM (NH4)2SO4]. 4. The analysis of some characteristics of the nuclear RNAase(s) (most of which is soluble and shows a maximum of activity at pH 4−5) could indicate that part of this hydrolytic enzyme may have a lysosomal origin. 5. This fact appears to be in agreement with the finding that in the mussels exposed for 4 months to aromatic hydrocarbons the lysosomal stability decreases drastically and the total content of lysosomal enzymes is significantly increased (+42.4%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 matm pCO2, but DMSP production normalised to cell volume was 12% lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32% respectively at pCO2 up to 3000 matm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMSand dissolvedDMSPat higher pCO2.DMSandDMSPproduction differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.