10 resultados para STIMULATION-PRODUCED ANALGESIA

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormesis is the name given to the stimulatory effects caused by low levels of potentially toxic agents. When this phenomenon was first identified it was called the Arndt-Schulz Law or Hueppe's Rule, because it was thought to occur generally. Although this generalisation is not accepted today, there has never been more evidence in its support, justifying a re-examination of the phenomenon. Evidence from the literature shows that not only has growth hormesis been observed in a range of taxa after exposure to a variety of agents, but also that the dose-response data have a consistent form. While there are a number of separate hypotheses to explain specific instances of hormesis, the evidence presented here suggests that different examples might have a common explanation, and the possibility of a general theory is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown experimentally that subinhibitory concentrations of a number of toxic, or other agents that are typically inhibitory (copper, cadmium, tributyl tin fluoride, reduced salinity), may stimulate the growth of colonies of the hydroid Campanularia flexuosa, exhibiting a phenomenon known as hormesis. It is suggested that the stimulation of growth is not due to the specific properties of the different toxicants, but to an adaptive response of the hydroid to the inhibitory effect that they have in common. Growth is regulated by a control mechanism and it is proposed that the increased growth is a consequence of overcorrections to low levels of an inhibitory challenge. Examination of the toxicological literature shows that hormesis is a more common occurrence that is generally supposed, and it is suggested that the explanation given here might apply in other cases of hormesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: The aim of this study was to evaluate biosurfactant production by a novel marine Rhodococcus sp., strain PML026 and characterize the chemical nature and properties of the biosurfactant. METHODS AND RESULTS: A novel marine bacterium (Rhodococcus species; strain PML026) was shown to produce biosurfactant in the presence of hydrophobic substrate (sunflower oil). Biosurfactant production (identified as a trehalolipid) was monitored in whole-batch cultures (oil layer and aqueous phase), aqueous phase (no oil layer) and filtered (0·2mum) aqueous phase (no oil or cells; extracellular) and was shown to be closely associated with growth/biomass production. Extracellular trehalolipid levels increased postonset of stationary growth phase. Purified trehalolipid was able to reduce the surface tension of water to 29mN m(-1) at Critical Micellar Concentration (CMC) of c. 250mgl(-1) and produced emulsions that were stable to a wide range of conditions (pH 2-10, temperatures of 20-100°C and NaCl concentrations of 5-25% w/v). Separate chemical analyses of the intact trehalolipid and its constituents demonstrated the compound was in fact a mixture of homologues (>1180MW) consisting of a trehalose moiety esterified to a series of straight chain and hydroxylated fatty acids. CONCLUSIONS: The trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. PML026 was characterized and exhibited high surfactant activity under a wide range of conditions. SIGNIFICANCE AND IMPACT OF STUDY: Strain PML026 of Rhodococcus sp. is a potential candidate for bioremediation or biosurfactant production for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.