4 resultados para STEEP

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relatively new recreational pursuit of coasteering, which has developed in the St David's area of Pembrokeshire, appears to be expanding rapidly. The majority of local commercial recreation providers (outdoor pursuit centers etc.) now appear to offer this pursuit. The majority of the rocky coastlines where it takes place lie within Pembrokeshire Marine Special Area of Conservation (SAC), and are also Sites of Special Scientific Interest (SSSI). No assessment has yet been undertaken of coasteering's potential impact on the intertidal habitats. Therefore the Countryside Council for Wales (CCW) commissioned the Marine Life Information Network (MarLIN) to undertake a desk study of the likely environmental effects of coasteering on rocky intertidal habitats within the Pembrokeshire marine SAC. The desk study was based on a review of the available literature, and in particular the effects of trampling on rocky intertidal communities. Communities (as biotopes) within the Pembrokeshire marine SAC likely to be exposed to coasteering activities were identified from Phase I biotope data for the area, provided by CCW. Where possible, existing research by MarLIN into the intolerance, recoverability and sensitivity of the biotopes identified, was used to identify their potential vulnerability to trampling. The literature review revealed that: - foliose canopy forming algae (e.g. fucoids) were particularly intolerant and sensitive to trampling impacts; - trampling damaged erect coralline turfs, barnacles, and resulted in an increase in bare space; in some cases paths across the shore were visible; - on brown algae dominated shores, understorey algae could suffer due to increased desiccation but algal turf species, opportunists and gastropod grazers (e.g. limpets) could increase in abundance as an indirect effect of trampling, and that - trampling impacts resulted from physical contact and wear and were dependant on the intensity, duration, and frequency of trampling, and even the type of footwear used. A total of 19 intolerant rocky intertidal biotopes were identified as potentially vulnerable to trampling and hence coasteering within the Pembrokeshire marine SAC, of which six are of Welsh importance and eight are nationally rare or scarce. Trampling is a highly localized impact and it was not possible to identify biotopes, and hence communities, actually impacted by coasteering activities in the Pembrokeshire marine SAC. In addition, the majority of the literature addresses the impacts of trampling on wave sheltered or moderately exposed brown algal dominated shores, while coasteering occurs on more wave exposed, steeply inclined shores. Therefore, direct survey of the routes used by coasteering groups within the Pembrokeshire marine SAC is required to identify the intensity, duration and frequency of trampling impact, together with the communities impacted. Given the paucity of data concerning trampling effects in the rocky intertidal in the UK, a survey of the impacts of coasteering would provide an opportunity to examine the effects of trampling and visitor use in steep rocky, wave exposed shores. The report recognizes the potential to engage coasteerers in contributing to the development of strategies for minimizing adverse impacts, recording impacts and collecting information of use in identifying climate change and the occurrence of non-native species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of population growth, generation time, fecundity and respiration in laboratory culture have been made, in relation to temperature and salinity, for the nematode Diplolaimelloides bruciei Hopper, a species normally associated with decayed material of the marsh grass Spartina. The intrinsic rate of increase (r) is high: it is related to temperature between 5° and 25°C by a sigmoid function which is steepest between 10° and 15°C, and is maximum at 26‰ salinity. Generation time is related to temperature by a power function and is shortest at 26‰ salinity. The effect of temperature on generation time is consistent with other data for marine nematodes, and the steep slope of r against temperature is largely due to the marked effect of temperature on fecundity. A sex ratio of 2:1 in favour of males is maintained regardless of culture conditions or population density. Respiration increases exponentially with temperature between 5° and 25°C, with a very high Q10 (3.94), but is not affected by salinity. At 30°C respiration is no higher than at 25°C. A high and relatively stable production efficiency (P/A) is maintained between 10 and 30°C with a maximum of 87% at 15°C; there is a stable reproductive effort (Pr/A) of about 10%. At 5°C both these ratios are zero. Data for the harpacticoid copepod Tachidius discipes, derived from the literature, show that this too has a high and stable production efficiency, which may be a characteristic of meiofaunal species in general, but in this species efficiency is relatively high at 5°C. Many features of the energy balance in D. bruciei can be related to an opportunistic mode of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014.