9 resultados para Rudd, Bévil (1895-1948)

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey provides a unique multi- decadal dataset on the abundance of plankton in the North Sea and North Atlantic and is one of only a few monitoring programmes operating at a large spatio- temporal scale. The results of all samples analysed from the survey since 1946 are stored on an Access Database at the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) in Plymouth. The database is large, containing more than two million records (~80 million data points, if zero results are added) for more than 450 taxonomic entities. An open data policy is operated by SAHFOS. However, the data are not on-line and so access by scientists and others wishing to use the results is not interactive. Requests for data are dealt with by the Database Manager. To facilitate access to the data from the North Sea, which is an area of high research interest, a selected set of data for key phytoplankton and zooplankton species has been processed in a form that makes them readily available on CD for research and other applications. A set of MATLAB tools has been developed to provide an interpolated spatio-temporal description of plankton sampled by the CPR in the North Sea, as well as easy and fast access to users in the form of a browser. Using geostatistical techniques, plankton abundance values have been interpolated on a regular grid covering the North Sea. The grid is established on centres of 1 degree longitude x 0.5 degree latitude (~32 x 30 nautical miles). Based on a monthly temporal resolution over a fifty-year period (1948-1997), 600 distribution maps have been produced for 54 zooplankton species, and 480 distribution maps for 57 phytoplankton species over the shorter period 1958-1997. The gridded database has been developed in a user-friendly form and incorporates, as a package on a CD, a set of options for visualisation and interpretation, including the facility to plot maps for selected species by month, year, groups of months or years, long-term means or as time series and contour plots. This study constitutes the first application of an easily accessed and interactive gridded database of plankton abundance in the North Sea. As a further development the MATLAB browser is being converted to a user- friendly Windows-compatible format (WinCPR) for release on CD and via the Web in 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.