5 resultados para Rite of passage

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Between 20.5 and 93.6 % of the subitaneous eggs of 6 species of egg-carrying copepods passed undigested through the digestive tracts of larval and early postlarval turbot Scophthalmus maximus. Viability of the eggs of Eurytemora affinis, E. velox and Euterpina acutifrons remained high on egestion (67.0 to 91.7 %), Pseudocalanus elongatus and Oncaea venusta eggs had low viability (1.1 to 1.5 %), while all Corycaeus anglicus eggs were rendered inviable. The indigestibility of the eggs denies the turbot larvae a potentially valuable food resource, while retention of high egg viability in certain species reduces the effect of predation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.