13 resultados para Responding
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
Resumo:
Understanding how climate change will affect the planet is a key issue worldwide. Questions concerning the pace and impacts of climate change are thus central to many ecological and biogeochemical studies, and addressing the consequences of climate change is now high on the list of priorities for funding agencies. Here, we review the interactions between climate change and plankton communities, focusing on systematic changes in plankton community structure, abundance, distribution and phenology over recent decades. We examine the potential socioeconomic impacts of these plankton changes, such as the effects of bottom-up forcing on commercially exploited fish stocks (i.e. plankton as food for fish). We also consider the crucial roles that plankton might have in dictating the future pace of climate change via feedback mechanisms responding to elevated atmospheric CO sub(2) levels. An important message emerges from this review: ongoing plankton monitoring programmes worldwide will act as sentinels to identify future changes in marine ecosystems.
Resumo:
Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.
Resumo:
Large-scale biogeographical changes in the biodiversity of a key zooplankton group (calanoid copepods) were detected in the north-eastern part of the North Atlantic Ocean and its adjacent seas over the period 1960–1999. These findings provided key empirical evidence for climate change impacts on marine ecosystems at the regional to oceanic scale. Since 1999, global temperatures have continued to rise in the region. Here, we extend the analysis to the period 1958–2005 using all calanoid copepod species assemblages (nine species assemblages based on an analysis including a total of 108 calanoid species or taxa) and show that this phenomenon has been reinforced in all regions. Our study reveals that the biodiversity of calanoid copepods are responding quickly to sea surface temperature (SST) rise by moving geographically northward at a rapid rate up to about 23.16 km yr−1. Our analysis suggests that nearly half of the increase in sea temperature in the northeast Atlantic and adjacent seas is related to global temperature rises (46.35% of the total variance of temperature) while changes in both natural modes of atmospheric and oceanic circulation explain 26.45% of the total variance of temperature. Although some SST isotherms have moved northwards by an average rate of up to 21.75 km yr−1 (e.g. the North Sea), their movement cannot fully quantify all species assemblage shifts. Furthermore, the observed rates of biogeographical movements are far greater than those observed in the terrestrial realm. Here, we discuss the processes that may explain such a discrepancy and suggest that the differences are mainly explained by the fluid nature of the pelagic domain, the life cycle of the zooplankton and the lesser anthropogenic influence (e.g. exploitation, habitat fragmentation) on these organisms. We also hypothesize that despite changes in the path and intensity of the oceanic currents that may modify quickly and greatly pelagic zooplankton species, these organisms may reflect better the current impact of climate warming on ecosystems as terrestrial organisms are likely to significantly lag the current impact of climate change.
Resumo:
Some commercial fish species of the northeast Atlantic Ocean have relocated in response to warming. The impact of warming on marine assemblages in the region may already be much greater than appreciated, however, with over 70% of common demersal fish species responding through changes in abundance, rather than range. The northeast Atlantic Ocean is one of the most productive marine ecoregions in the world with a substantial commercial fishery. It is also a region that has undergone particularly rapid warming over the past 50 years, up to four times faster than the global average1. Compared with other marine regions worldwide, the biological response in the northeast Atlantic Ocean has been particularly dramatic, reflecting this rapid warming. Studies have documented biogeographical movements in marine plankton of over 1,000 km northwards2 and advances in the onset of key life-history events by six to eight weeks3. In addition, there has been limited evidence of distributional shifts in some fish species along latitudinal and depth gradients in response to warming4, 5. Writing in Current Biology, Stephen Simpson and colleagues6 present the most comprehensive analysis so far of the impact of warming on commercially important European continental-shelf fish species in the region, and in doing so show that there has been a profound reorganization of local communities.
Resumo:
There is an accumulating body of evidence to suggest that many marine ecosystems in the North Atlantic, both physically and biologically are responding to changes in regional climate caused predominately by the warming of air and sea surface temperatures (SST) and to a varying degree by the modification of oceanic currents, precipitation regimes and wind patterns. The biological manifestations of rising SST and oceanographic changes have variously taken the form of biogeographical, phenological, physiological and community changes. For example, during the last 40 years there has been a northerly movement of warmer water plankton by 10 degree latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes playing an important role. Other research has shown that the plankton community in the North Sea has responded to changes in SST by adjusting their seasonality (in some cases a shift in seasonal cycles of over six weeks has been detected), but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch. Therefore, while it has been documented that marine ecosystems in certain regions of the Atlantic have undergone some conspicuous changes over the last few decades it is not known whether this is a pan-oceanic homogenous response. Using these two most prominent responses and/or indicative signals of pelagic ecosystems to hydro-climatic change, changes in species phenology and the biogeographical movement of populations, we attempt to identify vulnerable regional areas in terms of particularly rapid and marked change.
Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea
Resumo:
Long-term changes in mesozooplankton and phytoplankton populations have been well documented in the North Atlantic region, whereas data for microzooplankton are scarce. This neglected component of the plankton is a vital link in marine food-webs, grazing on smaller flagellates and cyanobacteria and in turn providing food for the larger mesozooplankton. We use the latest tintinnid (Ciliophora, Protista) data from the Continuous Plankton Recorder (CPR) survey in the NE Atlantic and North Sea to examine the phenology, distribution and abundance of this important group of ciliates. Presence/absence data came from 167 122 CPR samples collected between 1960 and 2009 and abundance data from 49 662 samples collected between 1996 and 2009. In the North Atlantic the genus Dictyocysta spp. dominated and Parafavella gigantea showed an increase in abundance around Iceland and Greenland. In the North Sea higher densities of Tintinnopsis spp., Favella serrata and Ptychocylis spp. were found. The presence of tintinnids in CPR samples collected in the North Atlantic has increased over the last 50 years and the seasonal window of high abundance has lengthened. Conversely in the North Sea there has been an overall reduction in abundance. We discuss possible drivers for these long-term changes and point the way forward to more holistic studies that examine how ecosystems, rather than just selected taxa, are responding to climate change.
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing and pH is decreasing. These unparalleled changes present new challenges for managing our seas, as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve good environmental status (GES) in their seas by 2020; this means management towards GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so, an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring programme that has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European Seas. Thus, the continuation of long-term ecological time series such as the CPR survey is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing, and pH is decreasing. These unparalleled changes present new challenges for managing our seas as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve Good Environmental Status (GES) in their seas by 2020; this means management toward GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring program which has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European seas. Thus the continuation of long-term ecological time-series such as the CPR is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.
Resumo:
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
Resumo:
Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.