60 resultados para Respiratory Exposure
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species.
Resumo:
Individuals of Mytilus edulis L., collected from the Erme estuary (S.W. England) in 1978, were exposed to low concentrations (7 to 68 μg l-1) of the water-accommodated fraction (WAF) of North Sea crude oil. The pattern of accumulation of petroleum hydrocarbons in the body tissues was affected by the presence of algal food cells, the period of exposure, the hydrocarbon concentration in seawater, the type of body tissue and the nature of the hydrocarbon. Many physiological responses (e.g. rates of oxygen consumption, feeding, excretion, and scope for growth), cellular responses (e.g. lysosomal latency and digestive cell size) and biochemical responses (e.g. specific activities of several enzymes) were significantly altered by short-term (4 wk) and/or long-term (5 mo) exposure to WAF. Stress indices such as scope for growth and lysosomal latency were negatively correlated with tissue aromatic hydrocarbons.
Resumo:
1. Aerial rate of oxygen consumption by Mytilus edulis and M. galloprovincialis is 4–17% of the aquatic rate. 2. For Cardium edule and Modiolus demissus the aerial rate of oxygen uptake is between 28 and 78% of the aquatic rate. 3. These species differences are related to the degree of shell gape during air exposure. 4. All species show an apparent oxygen debt after exposure to air, the extent of which is not simply related to either the level of aerobic respiration or the degree of anaerobiosis during exposure. 5. Anaerobic end-products accumulate in the tissues of Mytilus during aerial exposure, but not in Cardium. 6. The relative energy yields by aerobic and anaerobic means in M. edulis are discussed.