4 resultados para Residual autocorrelation and autocovariance matrices

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within-otolith replication in the experimental design. Our findings provide novel evidence to aid the design of future sampling programs and improve our general understanding of the mechanisms regulating elemental fingerprints.