78 resultados para Remote sensing data

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assigning uncertainty to ocean-color satellite products is a requirement to allow informed use of these data. Here, uncertainty estimates are derived using the comparison on a 12th-degree grid of coincident daily records of the remote-sensing reflectance RRS obtained with the same processing chain from three satellite missions, MERIS, MODIS and SeaWiFS. The approach is spatially resolved and produces σ, the part of the RRS uncertainty budget associated with random effects. The global average of σ decreases with wavelength from approximately 0.7– 0.9 10−3 sr−1 at 412 nm to 0.05–0.1 10−3 sr−1 at the red band, with uncertainties on σ evaluated as 20–30% between 412 and 555 nm, and 30–40% at 670 nm. The distribution of σ shows a restricted spatial variability and small variations with season, which makes the multi-annual global distribution of σ an estimate applicable to all retrievals of the considered missions. The comparison of σ with other uncertainty estimates derived from field data or with the support of algorithms provides a consistent picture. When translated in relative terms, and assuming a relatively low bias, the distribution of σ suggests that the objective of a 5% uncertainty is fulfilled between 412 and 490 nm for oligotrophic waters (chlorophyll-a concentration below 0.1 mg m−3). This study also provides comparison statistics. Spectrally, the mean absolute relative difference between RRS from different missions shows a characteristic U-shape with both ends at blue and red wavelengths inversely related to the amplitude of RRS. On average and for the considered data sets, SeaWiFS RRS tend to be slightly higher than MODIS RRS, which in turn appear higher than MERIS RRS. Biases between mission-specific RRS may exhibit a seasonal dependence, particularly in the subtropical belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal changes in altimeter data are derived for the North Atlantic Ocean. Altimeter data are then used to examine annually propagating structure along 26 degree N. By averaging the altimeter data into monthly values or by Fourier analysis, a positive anomaly can be followed from 17 degree W to similar to 50 degree W along similar to 26 degree N. The methods give a westward travel speed of 1 degree of longitude a month and a half-life of one year for the average decaying structure. At similar to 50 degree W 26 degree N, the average structure is about 2.8 years old with an elevation signal of similar to 1 cm, having gravelled similar to 3300 km westward. The mean positive anomaly results from the formation of anticyclonic eddies which are generally formed annually south of the Canary Islands by late summer and which then travel westward near 26 degree N. Individual eddy structure along 26 degree N is examined and related to in situ measurements and anomalies in the annual seasonal concentration cycle of SeaWiFS chlorophyll-a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The position and structure of the North Atlantic Subtropical Front is studied using Lagrangian flow tracks and remote sensing (AVHRR imagery: TOPEX/POSEIDON altimetry: SeaWiFS) in a broad region ( similar to 31 degree to similar to 36 degree N) of marked gradient of dynamic height (Azores Current) that extends from the Mid-Atlantic Ridge (MAR), near similar to 40 degree W, to the Eastern Boundary ( similar to 10 degree W). Drogued Argos buoy and ALACE tracks are superposed on infrared satellite images in the Subtropical Front region. Cold (cyclonic) structures, called storms, and warm (anticyclonic) structures of 100-300 km in size can be found on the south side of the Subtropical Front outcrop, which has a temperature contrast of about 1 degree C that can be followed for similar to 2500 km near 35 degree N. Warmer water adjacent to the outcrop is flowing eastward (Azores Current) but some warm water is returned westward about 300 km to the south (southern Counterflow). Estimates of horizontal diffusion in a Storm (D=2.2t10 super(2) m super(2) s super(-1)) and in the Subtropical Front region near 200 m depth (D sub(x)=1.3t10 super(4) m super(2) s super(-1), D sub(y)=2.6t10 super(3) m super(2) s super(-1)) are made from the Lagrangian tracks. Altimeter and in situ measurements show that Storms track westwards. Storms are separated by about 510 km and move westward at 2.7 km d super(-1). Remote sensing reveals that some initial structures start evolving as far east as 23 degree W but are more organized near 29 degree W and therefore Storms are about 1 year old when they reach the MAR (having travelled a distance of 1000 km). Structure and seasonality in SeaWiFS data in the region is examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite remote sensing of ocean colour is the only method currently available for synoptically measuring wide-area properties of ocean ecosystems, such as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical and ecological methods have been established that use satellite data to identify and differentiate between either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). In this study, several of these techniques were evaluated against in situ observations to determine their ability to detect dominant phytoplankton size classes (micro-, nano- and picoplankton). The techniques are applied to a 10-year ocean-colour data series from the SeaWiFS satellite sensor and compared with in situ data (6504 samples) from a variety of locations in the global ocean. Results show that spectral-response, ecological and abundance-based approaches can all perform with similar accuracy. Detection of microplankton and picoplankton were generally better than detection of nanoplankton. Abundance-based approaches were shown to provide better spatial retrieval of PSCs. Individual model performance varied according to PSC, input satellite data sources and in situ validation data types. Uncertainty in the comparison procedure and data sources was considered. Improved availability of in situ observations would aid ongoing research in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneity in phytoplankton production in the North Atlantic after the spring bloom is poorly understood. We analysed merged microwave and infrared satellite sea surface temperature (SST) data and ocean colour phytoplankton size class biomass, primary production (PP) and new production (ExP) derived from SeaWiFS data, to assess the spatial and temporal frequency of surface thermal fronts and areas of enhanced PP and ExP. Strong and persistent surface thermal fronts occurred at the Reykjanes Ridge (RR) and sub-polar front (SPF), which sustain high PP and ExP and, outside of the spring bloom, account for 9% and 15% of the total production in the North Atlantic. When normalised by area, PP at the SPF is four times higher than the RR. Analysis of 13 years of satellite ocean colour data from SeaWiFS, and compared with MODIS-Aqua and MERIS, showed that there was no increase in Chla from 1998 to 2002, which then decreased in all areas from 2002 to 2007 and was most pronounced in the RR. These time series also illustrated that the SPF exhibited the highest PP and the lowest variation in Chla over the ocean colour record. This implies that the SPF provides a high and consistent supply of carbon to the benthos irrespective of fluctuations in the North Atlantic Oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating primary production at large spatial scales is key to our understanding of the global carbon cycle. Algorithms to estimate primary production are well established and have been used in many studies with success. One of the key parameters in these algorithms is the chlorophyll-normalised production rate under light saturation (referred to as the light saturation parameter or the assimilation number). It is known to depend on temperature, light history and nutrient conditions, but assigning a magnitude to it at particular space-time points is difficult. In this paper, we explore two models to estimate the assimilation number at the global scale from remotely-sensed data that combine methods to estimate the carbon-to-chlorophyll ratio and the maximum growth rate of phytoplankton. The inputs to the algorithms are the surface concentration of chlorophyll, seasurface temperature, photosynthetically-active radiation af the surface of the sea, sea surface nutrient concentration and mixed-layer depth. A large database of in situ estimates of the assimilation number is used to develop the models and provide elements of validation. The comparisons with in situ observations are promising and global maps of assimilation number are produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems.