13 resultados para Regulation economics
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.
Resumo:
The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.
Resumo:
The EU Marine Strategy Framework Directive (MSFD) sets out a plan of action relating to marine environmental policy and in particular to achieving ‘good environmental status’ (GES) in European marine waters by 2020. Article 8.1 (c) of the Directive calls for ‘an economic and social analysis of the use of those waters and of the cost of degradation of the marine environment’. The MSFD is ‘informed’ by the Ecosystem Approach to management, with GES interpreted in terms of ecosystem functioning and services provision. Implementation of the Ecosystem Approach is expected to be by adaptive management policy and practice. The initial socio-economic assessment was made by maritime EU Member States between 2011 and 2012, with future updates to be made on a regular basis. For the majority of Member States, this assessment has led to an exercise combining an analysis of maritime activities both at national and coastal zone scales, and an analysis of the non-market value of marine waters. In this paper we examine the approaches taken in more detail, outline the main challenges facing the Member States in assessing the economic value of achieving GES as outlined in the Directive and make recommendations for the theoretically sound and practically useful completion of the required follow-up economic assessments specified in the MSFD.
Resumo:
Here we present quantitative projections of potential futures for ecosystems in the North Atlantic basin generated from coupling a climate change-driven biophysical model (representing ecosystem and fish populations under climate change) and a scenario-driven ecological–economic model (representing fleets and industries under economic globalization). Four contrasting scenarios (Baseline, Fortress, Global Commons, Free Trade) were defined from the perspective of alternative regional management and governance of the oceanic basin, providing pathways for the future of ecosystems in the Northeast Atlantic basin by 2040. Results indicate that in the time frame considered: (1) the effects of governance and trade decisions are more significant in determining outcomes than the effects of climate change alone, (2) climate change is likely to result in a poleward latitudinal shift of species ranges and thus resources, with implications for exploitation patterns, (3) the level of fisheries regulation is the most important factor in determining the long term evolution of the fisheries system, (4) coupling climate change and governance impacts demonstrates the complex interaction between different components of this social–ecological system, (5) an important driver of change for the future of the North Atlantic and the European fishing fleets appears to be the interplay between wild fisheries and aquaculture development, and finally (6) scenarios demonstrate that the viability and profit of fisheries industries is highly volatile. This study highlights the need to explore basin-scale policy that combines medium to long-term environmental and socio-economic considerations, and the importance of defining alternative sustainable pathways.
Resumo:
Toxin production in marine microalgae was previously shown to be tightly coupled with cellular stoichiometry. The highest values of cellular toxin are in fact mainly associated with a high carbon to nutrient cellular ratio. In particular, the cellular accumulation of C-rich toxins (i.e., with C:N > 6.6) can be stimulated by both N and P deficiency. Dinoflagellates are the main producers of C-rich toxins and may represent a serious threat for human health and the marine ecosystem. As such, the development of a numerical model able to predict how toxin production is stimulated by nutrient supply/deficiency is of primary utility for both scientific and management purposes. In this work we have developed a mechanistic model describing the stoichiometric regulation of C-rich toxins in marine dinoflagellates. To this purpose, a new formulation describing toxin production and fate was embedded in the European Regional Seas Ecosystem Model (ERSEM), here simplified to describe a monospecific batch culture. Toxin production was assumed to be composed by two distinct additive terms; the first is a constant fraction of algal production and is assumed to take place at any physiological conditions. The second term is assumed to be dependent on algal biomass and to be stimulated by internal nutrient deficiency. By using these assumptions, the model reproduced the concentrations and temporal evolution of toxins observed in cultures of Ostreopsis cf. ovata, a benthic/epiphytic dinoflagellate producing C-rich toxins named ovatoxins. The analysis of simulations and their comparison with experimental data provided a conceptual model linking toxin production and nutritional status in this species. The model was also qualitatively validated by using independent literature data, and the results indicate that our formulation can be also used to simulate toxin dynamics in other dinoflagellates. Our model represents an important step towards the simulation and prediction of marine algal toxicity.
Resumo:
The EU Marine Strategy Framework Directive (MSFD) sets out a plan of action relating to marine environmental policy and in particular to achieving ‘good environmental status’ (GES) in European marine waters by 2020. Article 8.1 (c) of the Directive calls for ‘an economic and social analysis of the use of those waters and of the cost of degradation of the marine environment’. The MSFD is ‘informed’ by the Ecosystem Approach to management, with GES interpreted in terms of ecosystem functioning and services provision. Implementation of the Ecosystem Approach is expected to be by adaptive management policy and practice. The initial socio-economic assessment was made by maritime EU Member States between 2011 and 2012, with future updates to be made on a regular basis. For the majority of Member States, this assessment has led to an exercise combining an analysis of maritime activities both at national and coastal zone scales, and an analysis of the non-market value of marine waters. In this paper we examine the approaches taken in more detail, outline the main challenges facing the Member States in assessing the economic value of achieving GES as outlined in the Directive and make recommendations for the theoretically sound and practically useful completion of the required follow-up economic assessments specified in the MSFD.