5 resultados para Refuge

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal processes and wildlife shape the coast into a variety of eye-catching and enticing landforms that attract people to marvel at, relax and enjoy coastal geomorphology. These landforms also influence biological communities by providing habitat and refuge. There are very few field guides to explain these processes to the general public and children. In contrast, there is a relative wealth of resources and organised activities introducing people to coastal wildlife, especially on rocky shores. These biological resources typically focus on the biology and climatic controls on their distribution, rather than how the biology interacts with its physical habitat. As an outcome of two recent rock coast biogeomorphology projects (detailed at: www.biogeomorph.org/coastal) a multi disciplinary team produced the first known guide to understanding how biogeomorphological processes help create coastal landforms. The ‘Shore Shapers’ guide (shoreshapers.org) is designed to: a. bring biotic geomorphic interactions (how animals, algae and microorganisms protect and shape rock) to life and b. introduce some of the geomorphological and geological controls on biogeomorphic processes and landform development. The guide provides scientific information in an accessible and interactive way – to help sustain children’s interest and extend their learning. We tested a draft version of the guide with children,the general public and volunteers on rocky shore rambles using social science techniques and present the findings, alongside initial results of an evaluation of a newer version of the guide and interactive workshops taking place throughout 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.