13 resultados para Reductions
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
An estuarine model is described which computes the dispersive and advective properties of the Severn Estuary. It was calibrated and validated using 50 measured salinity distributions and then used to predict the magnitude and sitings of the major inputs of dissolved cadmium levels throughout the estuary. The results provided an impetus for implementing tighter controls on effluents and for improving estimates of cadmium discharges from industrial sources. The model has also been used to investigate the sensitivity of the estuarine system to changes in dispersion; by considering large reductions in the dispersion coefficients it is hoped that the results might be indicative of the environmental consequences following the construction of a tidal power generating scheme.
Resumo:
The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference targets/standards to support other EO missions. This paper presents the TRUTHS mission and its objectives. TRUTHS will be the first satellite mission to calibrate its EO instrumentation directly to SI in orbit, overcoming the usual uncertainties associated with drifts of sensor gain and spectral shape by using an electrical rather than an optical standard as the basis of its calibration. The range of instruments flown as part of the payload will also provide accurate input data to improve atmospheric radiative transfer codes by anchoring boundary conditions, through simultaneous measurements of aerosols, particulates and radiances at various heights. Therefore, TRUTHS will significantly improve the performance and accuracy of EO missions with broad global or operational aims, as well as more dedicated missions. The provision of reference standards will also improve synergy between missions by reducing errors due to different calibration biases and offer cost reductions for future missions by reducing the demands for on-board calibration systems. Such improvements are important for the future success of strategies such as Global Monitoring for Environment and Security (GMES) and the implementation and monitoring of international treaties such as the Kyoto Protocol. TRUTHS will achieve these aims by measuring the geophysical variables of solar and lunar irradiance, together with both polarised and unpolarised spectral radiance of the Moon, Earth and its atmosphere.
Resumo:
Chemoreception is a key activity by which many aquatic animals perceive their environment, and therefore abiotic disruptions to this process could have serious impacts on the survival and fitness of individuals, and on species interactions. Hermit crabs are subject to cyclical reductions in the pH of the water in the intertidal rock pools that they inhabit. Such reductions may be further exacerbated by ongoing ocean acidification and/or leakage of carbon dioxide from geological storage sites and coastal upwelling events. Here we test the chemo-sensory responses of the hermit crab Pagurus bernhardus (Linnaeus) to a food odour under reduced pH conditions (pHNBS = 6.80). Acidifying the odour had no effect on its attractiveness indicating no permanent degradation of the cue; however, the pH of the sea water did affect the crabs' responses. Hermit crabs kept and tested in reduced pH sea water had lower antennular flicking rates (the ‘sniffing’ response in decapods); were less successful in locating the odour source, and showed an overall decline in locomotory activity compared to those in untreated sea water. Analysis of their haemolymph revealed a greater concentration of chloride ions ([Cl−]) in the reduced pH treatment group, suggesting iono-regulatory disruption; however, there was no correlation between [Cl−] and locomotory activity, suggesting a specific effect on chemoreception. This study shows that the chemo-responsiveness of a crustacean may be influenced by both naturally occurring pH fluctuations and future anthropogenically-induced changes in ocean pH.
Resumo:
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.
Resumo:
Differential phenological responses to climate among species are predicted to disrupt trophic interactions, but datasets to evaluate this are scarce. We compared phenological trends for species from 4 levels of a North Sea food web over 24 yr when sea surface temperature (SST) increased significantly. We found little consistency in phenological trends between adjacent trophic levels, no significant relationships with SST, and no significant pairwise correlations between predator and prey phenologies, suggesting that trophic mismatching is occurring. Finer resolution data on timing of peak energy demand (mid-chick-rearing) for 5 seabird species at a major North Sea colony were compared to modelled daily changes in length of 0-group (young of the year) lesser sandeels Ammodytes marinus. The date at which sandeels reached a given threshold length became significantly later during the study. Although the phenology of all the species except shags also became later, these changes were insufficient to keep pace with sandeel length, and thus mean length (and energy value) of 0-group sandeels at mid-chick-rearing showed net declines. The magnitude of declines in energy value varied among the seabirds, being more marked in species showing no phenological response (shag, 4.80 kJ) and in later breeding species feeding on larger sandeels (kittiwake, 2.46 kJ) where, due to the relationship between sandeel length and energy value being non-linear, small reductions in length result in relatively large reductions in energy. However, despite the decline in energy value of 0-group sandeels during chick-rearing, there was no evidence of any adverse effect on breeding success for any of the seabird species. Trophic mismatch appears to be prevalent within the North Sea pelagic food web, suggesting that ecosystem functioning may be disrupted.
Resumo:
Highlights •We exposed meiofauna to 7 different large macrofauna species at high and low densities. •Macrofauna presence altered nematode community structure and reduced their abundance. •Macrofauna species had similar effects by reducing the few dominant nematode species. •Meio–macrofauna resource competition and spatial segregation are the main drivers. •Trawling effects on macrofauna affect nematode communities indirectly. Diverse assemblages of infauna in sediments provide important physical and biogeochemical services, but are under increasing pressure by anthropogenic activities, such as benthic trawling. It is known that trawling disturbance has a substantial effect on the larger benthic fauna, with reductions in density and diversity, and changes in community structure, benthic biomass, production, and bioturbation and biogeochemical processes. Largely unknown, however, are the mechanisms by which the trawling impacts on the large benthic macro- and megafauna may influence the smaller meiofauna. To investigate this, a mesocosm experiment was conducted whereby benthic nematode communities from a non-trawled area were exposed to three different densities (absent, low, normal) of 7 large (> 10 mm) naturally co-occurring, bioturbating species which are potentially vulnerable to trawling disturbance. The results showed that total abundances of nematodes were lower if these large macrofauna species were present, but no clear nematode abundance effects could be assigned to the macrofauna density differences. Nematode community structure changed in response to macrofauna presence and density, mainly as a result of the reduced abundance of a few dominant nematode species. Any detectable effects seemed similar for nearly all macrofauna species treatments, supporting the idea that there may be a general indirect, macrofauna-mediated trawling impact on nematode communities. Explanations for these results may be, firstly, competition for food resources, resulting in spatial segregation of the meio- and macrobenthic components. Secondly, different densities of large macrofauna organisms may affect the nematode community structure through different intensities of bioturbatory disturbance or resource competition. These results suggest that removal or reduced densities of larger macrofauna species as a result of trawling disturbance may lead to increased nematode abundance and hints at the validity of interference competition between large macrofauna organisms and the smaller meiofauna, and the energy equivalence hypothesis, where a trade-off is observed between groups of organisms that are dependent on a common source of energy.
Resumo:
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
Improving the performance of a Mediterranean demersal fishery towards societal objectives beyond MSY
Resumo:
Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48–71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M€ (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock–recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.
Resumo:
Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48-71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M(sic) (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.
Resumo:
Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.
Resumo:
The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 matm pCO2, but DMSP production normalised to cell volume was 12% lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32% respectively at pCO2 up to 3000 matm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMSand dissolvedDMSPat higher pCO2.DMSandDMSPproduction differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.
Resumo:
Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic.
Resumo:
Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.