182 resultados para Radioactive waste disposal in the ocean
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Very short-lived halocarbons are significant sources of reactive halogen in the marine boundary layer, and likely in the upper troposphere and lower stratosphere. Quantifying ambient concentrations in the surface ocean and atmosphere is essential for understanding the atmospheric impact of these trace gas fluxes. Despite the body of literature increasing substantially over recent years, calibration issues complicate the comparison of results and limit the utility of building larger-scale databases that would enable further development of the science (e.g. sea-air flux quantification, model validation, etc.). With this in mind, thirty-one scientists from both atmospheric and oceanic halocarbon communities in eight nations gathered in London in February 2008 to discuss the scientific issues and plan an international effort toward developing common calibration scales (http://tinyurl.com/c9cg58). Here, we discuss the outputs from this meeting, suggest the compounds that should be targeted initially, identify opportunities for beginning calibration and comparison efforts, and make recommendations for ways to improve the comparability of previous and future measurements.
Resumo:
The beam attenuation serves as a proxy for particulate matter and is a key parameter in visibility algorithms for the aquatic environment. It is well known, however, that the beam attenuation is a function of the acceptance angle of the transmissometer used to measure it. Here we compare eight different transmissometers with four different acceptance angles using four different deployment strategies and sites, and find that their mean attenuation values differ markedly and in a consistent way with instrument acceptance angle: smaller acceptance angles provide higher beam attenuation values. This difference is due to variations in scattered light collected with different acceptance angles and is neither constant nor easy to parameterize. Variability (in space or time) in the ratios of beam attenuations measured by two different instruments correlates, in most cases, with the particle size parameter (as expected from Mie theory), but this correlation is often weak and can be the opposite of expectations based on particle size changes. We recommended careful consideration of acceptance angle in applications of beam transmission data especially when comparing data from different instruments. (C) 2009 Optical Society of America
Resumo:
MURAWSKI AND COLLEAGUES STATE THAT OUR assessment of the impacts of global marine biodiversity loss is overly pessimistic. They imply that management interventions are likely to reverse current trends of overfishing, and that the U.S. National Marine Fisheries Service (NMFS) has already met that goal. They cite Georges Bank haddock as an example and contest that catch metrics (as used in our global analysis) are sufficient to track the status of this particular fish stock and possibly others. We agree that precise biomass data are preferable, but these are rarely available. Here, we illustrate that catches are a good proxy of the status of haddock, although there can be a short delay in detecting recovery under intense management. While NMFS’s own data show that full recovery is still uncommon (<5% of overfished stocks) (1), we strongly agree that destructive trends can be turned around and that rebuilding efforts need to be intensified to meet that goal. But we must not miss the forest for the trees: Continuing focus on single, well-assessed, economically viable species will leave most of the ocean’s declining biodiversity under the radar.
Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean
Resumo:
The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing 'pushes' the community towards larger cell sizes, whereas nutrient uptake and sinking 'pull' the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients.
Resumo:
The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.
Resumo:
The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.
Resumo:
Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.