20 resultados para Qualification level
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Some commercial fish species of the northeast Atlantic Ocean have relocated in response to warming. The impact of warming on marine assemblages in the region may already be much greater than appreciated, however, with over 70% of common demersal fish species responding through changes in abundance, rather than range. The northeast Atlantic Ocean is one of the most productive marine ecoregions in the world with a substantial commercial fishery. It is also a region that has undergone particularly rapid warming over the past 50 years, up to four times faster than the global average1. Compared with other marine regions worldwide, the biological response in the northeast Atlantic Ocean has been particularly dramatic, reflecting this rapid warming. Studies have documented biogeographical movements in marine plankton of over 1,000 km northwards2 and advances in the onset of key life-history events by six to eight weeks3. In addition, there has been limited evidence of distributional shifts in some fish species along latitudinal and depth gradients in response to warming4, 5. Writing in Current Biology, Stephen Simpson and colleagues6 present the most comprehensive analysis so far of the impact of warming on commercially important European continental-shelf fish species in the region, and in doing so show that there has been a profound reorganization of local communities.
Resumo:
Understanding the mechanisms that structure communities and influence biodiversity are fundamental goals of ecology. To test the hypothesis that the abundance and diversity of upper-trophic level predators (seabirds) is related to the underlying abundance and diversity of their prey (zooplankton) and ecosystem-wide energy availability (primary production), we initiated a monitoring program in 2002 that jointly and repeatedly surveys seabird and zooplankton populations across a 7,500 km British Columbia-Bering Sea-Japan transect. Seabird distributions were recorded by a single observer (MH) using a strip-width technique, mesozooplankton samples were collected with a Continuous Plankton Recorder, and primary production levels were derived using the appropriate satellite parameters and the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997). Each trophic level showed clear spatio-temporal patterns over the course of the study. The strongest relationship between seabird abundance and diversity and the lower trophic levels was observed in March/April ('spring') and significant relationships were also found through June/July ('summer'). No discernable relationships were observed during the September/October ('fall') months. Overall, mesozooplankton abundance and biomass explained the dominant portion of seabird abundance and diversity indices (richness, Simpson's Index, and evenness), while primary production was only related to seabird richness. These findings underscore the notion that perturbations of ocean productivity and lower trophic level ecosystem constituents influenced by climate change, such as shifts in timing (phenology) and synchronicity (match-mismatch), could impart far-reaching consequences throughout the marine food web.
Resumo:
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.