7 resultados para Pulpit eloquence of the 17th century

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.