6 resultados para Power-Law Distributions
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently pa- rametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much hetero- geneity is in each region preserved in the annual median data is also determined. The paper explicitly demon- strates how one can use these results to calculate representative measurement area for in situ networks.
Resumo:
Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently pa- rametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much hetero- geneity is in each region preserved in the annual median data is also determined. The paper explicitly demon- strates how one can use these results to calculate representative measurement area for in situ networks.
Resumo:
European continental shelf seas have experienced intense warming over the past 30 years1. In the North Sea, fish have been comprehensively monitored throughout this period and resulting data provide a unique record of changes in distribution and abundance in response to climate change2, 3. We use these data to demonstrate the remarkable power of generalized additive models (GAMs), trained on data earlier in the time series, to reliably predict trends in distribution and abundance in later years. Then, challenging process-based models that predict substantial and ongoing poleward shifts of cold-water species4, 5, we find that GAMs coupled with climate projections predict future distributions of demersal (bottom-dwelling) fish species over the next 50 years will be strongly constrained by availability of habitat of suitable depth. This will lead to pronounced changes in community structure, species interactions and commercial fisheries, unless individual acclimation or population-level evolutionary adaptations enable fish to tolerate warmer conditions or move to previously uninhabitable locations.
Resumo:
European continental shelf seas have experienced intense warming over the past 30 years1. In the North Sea, fish have been comprehensively monitored throughout this period and resulting data provide a unique record of changes in distribution and abundance in response to climate change2, 3. We use these data to demonstrate the remarkable power of generalized additive models (GAMs), trained on data earlier in the time series, to reliably predict trends in distribution and abundance in later years. Then, challenging process-based models that predict substantial and ongoing poleward shifts of cold-water species4, 5, we find that GAMs coupled with climate projections predict future distributions of demersal (bottom-dwelling) fish species over the next 50 years will be strongly constrained by availability of habitat of suitable depth. This will lead to pronounced changes in community structure, species interactions and commercial fisheries, unless individual acclimation or population-level evolutionary adaptations enable fish to tolerate warmer conditions or move to previously uninhabitable locations.