5 resultados para Polymer Molecular-crowding Effects

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coccolithophores, particularly the species Emiliania huxleyi (Lohmann) Hay & Mohler, account for the bulk of global calcium carbonate production and as such play a fundamental role in global CO2 cycling and the carbonate chemistry of the oceans. To evaluate the response of this functional group to the effects of climate change, we undertook a feasibility study to determine whether a retrospective approach could be used on archived coccolithophore datasets. We demonstrate for the first time a technique for the extraction of E. huxleyi nucleic acids from archived formalin-fixed samples of the long-term Continuous Plankton Recorder. Molecular analysis of a nine year old formalin-fixed sample reveals the presence of a diverse population of E. huxleyi genotypes within a developing coccolithophore bloom. In addition, E. huxleyi sequences were amplified from a number of formalin-fixed samples, the earliest of which was collected in August 1972. This molecular assay promises the possibility of studying global variations in the distribution and genetic make-up of E. huxleyi communities over extensive periods of time. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term effects of ocean warming on prokaryotic communities are unknown because of lack of historical data. We overcame this gap by applying a retrospective molecular analysis to the bacterial community on formalin-fixed samples from the historical Continuous Plankton Recorder archive, which is one of the longest and most geographically extensive collections of marine biological samples in the world. We showed that during the last half century, ubiquitous marine bacteria of the Vibrio genus, including Vibrio cholerae, increased in dominance within the plankton-associated bacterial community of the North Sea, where an unprecedented increase in bathing infections related to these bacteria was recently reported. Among environmental variables, increased sea surface temperature explained 45% of the variance in Vibrio data, supporting the view that ocean warming is favouring the spread of vibrios and may be the cause of the globally increasing trend in their associated diseases.