34 resultados para Polycyclic aromatic hydrocarbons (PAHs)
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Variations in the concentrations and microheterotrophic degradation rates of selected Polycyclic Aromatic Hydrocarbons (PAH) in the water column of the Tamar Estuary were investigated in relation to the major environmental variables. Concentrations of individual PAH varied typically between i and 50 ng l−1 Based on their observed environmental behaviour the PAH appeared divisible into two groupings: (1) low molecular weight PAH incorporating naphthalene, phenanthrene and anthracence and (a) the larger molecular weight homologues (fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)-pyrene). Group 1 PAH showed a complex distribution throughout the estuary with no significant correlations with either salinity or suspended particulates. Based on their relatively low particle affinity and high water solubilities and vapour pressures, volatilization is proposed as an important process in determining their fate. Microheterotrophic turnover times of naphthalene varied between x and 30 days, and were independent of suspended solids with maximum degradation rates located in the central and urban regions of the Estuary. When compared with the flushing times for the Tamar (3–5 days), it is probable that heterotrophic activity is important in the removal of naphthalene (and possibly the other Group 1 PAH) from the estuarine environment. In contrast Group 2 PAH concentrations exhibited highly significant correlations with suspended particulates. Highest concentrations occurred at the turbidity maximum, with a secondary concentration maximum localized to the industrialized portion of the estuary and associated with anthropogenic inputs. Laboratory degradation studies of benzo(a)pyrene in water samples taken from the estuary showed turnover times for the compound of between 2000 and 9000 days. Degradation rates correlated positively with suspended solids. The high particulate affinity and microbial refractivity of Group 2 PAH indicate sediment burial as the principal tate of these PAH in the Tamar Estuary. Estuarine sediments contained typically 50–1500 ng g−1 dry weight of individual PAH which were comparable to the levels of Group 2 PAH associated with the suspended particulates. Highest concentrations occurred at the riverine end of the estuary resulting from unresolved inputs in the catchment. Subsequent dilution by less polluted marine sediments together with slow degradation results in a seaward trend of decreasing concentrations. However, there is a secondary maximum of PAH superimposed on this trend which is associated with urban Plymouth.
Resumo:
Certain polycyclic aromatic hydrocarbons and phenobarbital induced an increase in the activity of microsomal NADPH neotetrazolium reductase (linked to mixed function oxygenase systems) in the blood cells of Mytilus edulis. Phenanthrene and methylated naphthalenes caused lysosomal destabilisation which is believed to be directly related to the mechanism of cytotoxicity in the digestive cells. The use of these cytochemical techniques as indices of aromatic hydrocarbon contamination is discussed.
Resumo:
An immunohistochemical method using antibodies against polycyclic aromatic hydrocarbons (PAHs) and dioxins was developed on frozen tissue sections of the earthworm Eisenia andrei exposed to environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50 ppm) and 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) (0.01, 0.1, 2 ppb) in spiked standard soils. The concentrations of B[a]P and TCDD in E. andrei exposed to the same conditions were also measured using analytical chemical procedures. The results demonstrated that tissues of worms exposed to even minimal amount of B[a]P and TCDD reacted positively and specifically to anti-PAHs and -dioxins antibody. Immunofluorescence revealed a much more intense staining for the gut compared to the body wall; moreover, positively immunoreactive amoeboid coelomocytes were also observed, i.e. cells in which we have previously demonstrated the occurrence of genotoxic damage. The double immunolabelling with antibodies against B[a]P/TCDD and the lysosomal enzyme cathepsin D demonstrated the lysosomal accumulation of the organic xenobiotic compounds, in particular in the cells of the chloragogenous tissue as well as in coelomocytes, involved into detoxification and protection of animals against toxic chemicals. The method described is timesaving, not expensive and easily applicable.
Resumo:
Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK’s busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally-located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines, were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets), and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in the winter of 2005-2006 previous to peak dredging. In the following winter 2006-2007, shelduck in Pembroke River showed their lowest winter count, and spring 2007 was the largest ever drop in numbers of broods across MHW between successive breeding seasons. Wigeon counts in Pembroke River were again low in late 2012 after further dredging nearby. These results are strongly supported by PAH data reported previously from invertebrate bioaccumulation studies in MHW 2007-2010, themselves closely reflecting sediment
Resumo:
This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.
Resumo:
This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.