3 resultados para Point interpolation method

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As well as range, the AltiKa altimeter provides estimates of wave height, Hs and normalized backscatter, s0, that need to be assessed prior to statistics based on them being included in climate databases. An analysis of crossovers with the Jason-2 altimeter shows AltiKa Hs values to be biased high by only »0.05m, with a standard deviation (s.d.) of »0.1m for seven-point averages. AltiKa’s s 0 values are 2.5–3 dB less than those from Jason-2, with a s.d. of »0.3 dB, with these relatively large mismatches to be expected as AltiKa measures a different part of the spectrum of sea surface roughness. A new wind speed algorithm is developed through matchinghistogram of s0 values to that for Jason-2 wind speeds. The algorithm is robust to the use of short durations of data, with a consistency at roughly the 0.1 m/s level. Incorporation of Hs as a secondary input reduces the assessed error at crossovers from 0.82 m/s to 0.71 m/s. A comparison across all altimeter frequencies used to date demonstrates that the lowest wind speeds preferentially develop the shortest scales of roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).