4 resultados para Pheromone Biosynthesis
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Many planktonic copepods use diffusible pheromone or hydromechanical signals to remotely detect the presence of potential mates. To determine whether these mating signals also play a role in species recognition and mate choice, we observed and video recorded (3D) mate-finding and pursuit behaviors in heterospecific and conspecific mating crosses in a pair of congeneric, partially sympatric species (Temora stylifera and T. longicornis) in the laboratory. The species appear to have asymmetrical pre-mating isolation, with T. longicornis males readily pursuing T. stylifera females to mate contact and capture, but with little mate-finding activity observed in the reverse cross. Males of T. longicornis pursuing heterospecific females executed a number of behaviors known to facilitate successful pheromone trail following and mate capture in conspecific mating, including accelerated swimming in a ‘signal-scanning’ mode to recover a lost pheromone trail, reversal of the tracking direction in cases when the male initiated tracking in the incorrect direction, and accelerated swimming speeds when in the presence of a pheromone signal but prior to locating the trail. Detailed analyses of mate-tracking behavior in T. longicornis male × T. stylifera female crosses gave no indication that males were aware they were pursuing heterospecific females prior to mate contact, indicating that diffusible pheromone and hydromechanical signals are not used, either singly or in combination, for species recognition in this mating pair. Heterospecific mating attempts among sympatric, congeneric copepods may commonly proceed to mate capture, and incur fitness costs to either or both mating partners.
Resumo:
Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.