5 resultados para Performance Studies

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of four common estimators of diversity are investigated using calanoid copepod data from the Continuous Plankton Recorder (CPR) survey. The region of the North Atlantic and the North Sea was divided into squares of 400 nautical miles for each 2-month period. For each 144 possible cases, Pielou's pooled quadrat method was performed with the aims of determining asymptotic diversity and investigating the CPR sample-size dependence of diversity estimators. It is shown that the performance of diversity indices may greatly vary in space and time (at a seasonal scale). This dependence is more pronounced in higher diverse environments and when the sample size is small. Despite results showing that all estimators underestimate the `actual' diversity, comparison of sites remained reliable from a few pooled CPR samples. Using more than one CPR sample, the Gini coefficient appears to be a better diversity estimator than any other indices and spatial or temporal comparisons are highly satisfactory. In situations where comparative studies are needed but only one CPR sample is available, taxonomic richness was the preferred method of estimating diversity. Recommendations are proposed to maximise the efficiency of diversity estimations with the CPR data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference targets/standards to support other EO missions. This paper presents the TRUTHS mission and its objectives. TRUTHS will be the first satellite mission to calibrate its EO instrumentation directly to SI in orbit, overcoming the usual uncertainties associated with drifts of sensor gain and spectral shape by using an electrical rather than an optical standard as the basis of its calibration. The range of instruments flown as part of the payload will also provide accurate input data to improve atmospheric radiative transfer codes by anchoring boundary conditions, through simultaneous measurements of aerosols, particulates and radiances at various heights. Therefore, TRUTHS will significantly improve the performance and accuracy of EO missions with broad global or operational aims, as well as more dedicated missions. The provision of reference standards will also improve synergy between missions by reducing errors due to different calibration biases and offer cost reductions for future missions by reducing the demands for on-board calibration systems. Such improvements are important for the future success of strategies such as Global Monitoring for Environment and Security (GMES) and the implementation and monitoring of international treaties such as the Kyoto Protocol. TRUTHS will achieve these aims by measuring the geophysical variables of solar and lunar irradiance, together with both polarised and unpolarised spectral radiance of the Moon, Earth and its atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48–71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M€ (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock–recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48-71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M(sic) (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.